Притяжение между мужским и женским полом присутствовало на протяжении всего существования человечества, поэтому, говоря языком алгебры, этот факт можно назвать заданной величиной.
Томас Альтус
Я вышла замуж за первого мужчину, которого поцеловала. Когда я рассказываю эту историю своим детям, они просто не находят слов.
Барбара Буш
Задолго до того, как стать профессором в области операционных исследований в Университете Карнеги – Меллон, Майкл Трик был обычным выпускником и искал любовь. «Меня осенило: эта проблема уже изучена; это же задача о секретаре! У меня была свободная позиция и несколько претенденток и была цель – выбрать лучшую». Майкл произвел расчет. Он не знал, сколько женщин он встретит в своей жизни, но само по себе правило тридцати семи процентов обладает определенной гибкостью: его можно применить как в отношении количества кандидатов, так и при определении периода поиска. Трик предположил, что будет искать суженую с 18 до 40 лет. Таким образом, согласно правилу 37 % он определил, что по достижении 26,1 года он должен перейти от «просмотра» кандидаток к непосредственному отбору. Так и получилось. Поэтому, когда он встретил женщину, которая подходила ему больше всех тех, с кем он раньше встречался, он точно знал, что нужно действовать. Он сделал свой выбор.
«Я не знал, была ли она идеальна для меня (сама модель алгоритма не позволяет определить это), но, вне всяческих сомнений, она соответствовала всем параметрам для следующего шага. Я сделал ей предложение, – пишет Трик, – и она ответила мне отказом».
Математики не понаслышке знают о несчастной любви как минимум с XVII века.
Имя легендарного астронома Иоганна Кеплера по сей день остается на слуху благодаря открытию эллиптической формы планетных орбит и его огромной роли наравне с Галилеем и Ньютоном в «Революции Коперника», которая перевернула представление человека о его месте в космосе. Но у Кеплера были и вполне земные переживания. После смерти первой жены в 1611 году он приступил к долгим и непростым поискам второй половины. В общей сложности Кеплер ухаживал за одиннадцатью женщинами.
Из первой «четверки» больше всех ему нравилась четвертая кандидатка («из-за ее высокого роста и атлетического телосложения»), однако на ней он не прекратил свои поиски. «Вопрос был бы решен, – писал он, – если бы любовь и разум не подтолкнули бы ко мне пятую женщину. Она покорила меня своей любовью, скромной преданностью, экономностью в хозяйстве, кротостью и заботой, которую она дарила моим детям. И тем не менее я продолжил поиски».
Друзья и знакомые Кеплера представляли его все новым дамам, и он продолжал свой поиск, но с некоторым безразличием. Его мысли оставались с той пятой женщиной. В конечном счете, после одиннадцати ухаживаний, он решил прекратить поиски. «Готовясь к поездке в Регенсбург, я вернулся к пятой женщине, открылся ей и получил ее согласие». Кеплер и Сюзанна Рюттингер поженились и вырастили шестерых детей, включая его детей от первого брака. Биографии описывают семейную жизнь Кеплера и Сюзанны как самое спокойное и радостное время в его жизни.
И Кеплер, и Трик – хоть и с разными конечными результатами – первыми убедились на собственном опыте, что задача о секретаре излишне упрощает поиски второй половины. В классическом варианте задачи претенденты на должность всегда дают положительный ответ на предложение о работе, исключая отказ, с которым столкнулся Трик. А «вернуть» кандидата, как это получилось у Кеплера, не представляется возможным.
На протяжении десятилетий, с момента появления задачи о секретаре, ученые рассматривали множество вариантов развития сценария и в итоге разработали новые стратегии оптимальной остановки в различных условиях. Возможность получения отказа, к примеру, может быть устранена простым математическим решением – необходимо предлагать рано и часто. Предположим, если ваши шансы быть отвергнутым составляют 50 на 50, тот же математический анализ, с помощью которого появилось правило тридцати семи процентов, предписывает нам начать делать предложения после первой четверти ваших поисков. В случае отказа продолжайте делать предложения каждому «лучшему на данный момент» человеку, которого встречаете, пока не получите положительный ответ. С такой стратегией общая вероятность вашего успеха, то есть получение согласия на ваше предложение от лучшего кандидата из имеющихся, составит 25 %. Очевидно, это не такой уж и плохой расклад для сценария, в котором возможность получить отказ сочетается с общей сложностью определения прежде всего своих стандартов.
Кеплер, в свою очередь, открыто ругал себя за «тревожность и нерешительность», которые заставили его продолжить поиски. «Неужели не было иного способа для моего смятенного сердца примириться с судьбой, – жаловался он своему близкому другу, – кроме как осознать невозможность исполнения других моих желаний?» В этом случае теория оптимальной остановки вновь приносит некоторое утешение. Беспокойство и нерешительность уже в меньшей степени служат признаками моральной или психологической деградации и оказываются частью успешной стратегии в тех сценариях, где второй шанс возможен.
Если вы можете вернуть предыдущих претендентов, то оптимальный алгоритм существенно преображает знакомое нам правило «семь раз отмерь, один раз отрежь»: вы дольше можете не связывать себя обязательствами, и у вас есть резервный план. Например, предположим, что своевременное предложение обречено на положительный ответ, при этом запоздалые предложения отвергают через раз. В этом случае математический расчет призывает нас продолжать поиски без каких бы то ни было обязательств до тех пор, пока вы не просмотрите 61 % всех кандидатов, и затем выбрать из оставшихся 39 % того, кто окажется лучшим для вас. Если, рассмотрев хорошенько все варианты, вы по-прежнему остались одиноки, как было с Кеплером, то вернитесь к лучшему кандидату из прошлого. И даже в этом случае симметричность стратегии и результата сохраняется: при наличии возможности «войти в одну и ту же реку дважды» вероятность того, что вы остановите свой выбор на лучшем кандидате, снова составляет 61 %.
В случае Кеплера несоответствие между реальной жизнью и задачей о секретаре в ее классическом понимании привело его к счастливому концу. По сути, неожиданный поворот в классической задаче сыграл на руку и Трику. После того отказа он защитил диплом и получил работу в Германии. Там «он зашел в бар, влюбился в красивую женщину, через три недели они уже жили вместе. Он предложил ей пожить "некоторое время" в Штатах». Она согласилась, и спустя шесть лет они поженились.
Первый рассмотренный нами набор вариантов – отказ и возврат – изменил в классической задаче о секретаре представление, что своевременные предложения принимаются всегда, а запоздалые – никогда. В этом случае наилучший подход остался таким же, как изначально: некоторое время наблюдать со стороны, взвесить все, а затем быть готовым к решительным действиям.
Но существует еще один важный момент в задаче о секретаре, который заставляет задуматься. А именно: мы ровным счетом ничего не знаем о соискателях, кроме их сравнительных характеристик. У нас нет четкого представления о том, каким должен быть хороший или плохой соискатель. Более того, когда мы сравниваем двух кандидатов, мы видим, кто из них лучше, но не понимаем, насколько лучше. И, проходя через эту неизбежную фазу поиска, мы рискуем упустить отличного кандидата, пока не определимся со своими требованиями и ожиданиями. Математики называют эту сложность с оптимальной остановкой игрой в отсутствие информации.
Этот принцип, вероятно, далек от большинства поисков квартиры, спутника жизни или того же секретаря. Но попробуйте на секунду представить, что у нас есть некий объективный критерий оценки (например, если бы каждый претендент на должность секретаря прошел бы обязательный экзамен на скорость печатания, результат которого выражался бы в перцентилях аналогично современным тестам SAT, GRE или LSAT). Таким образом, баллы каждого соискателя наглядно продемонстрируют его уровень среди всех прошедших тест: машинистка 51-го перцентиля всего лишь выше среднего уровня, в то время как машинистка 75-го перцентиля превосходит троих испытуемых из четырех и т. д.
Допустим, наша подборка соискателей репрезентативна и никоим образом не искажена и была выбрана случайно. Более того, предположим, что скорость печатания – это единственный критерий, по которому мы отбираем кандидатов на должность. Тогда мы приходим к тому, что математики называют полной информацией, и ситуация меняется. «Чтобы установить стандарт, не нужно накапливать опыт, – говорится в основной статье по этой проблеме, написанной еще в 1966 году, – и удачный выбор порой делается мгновенно». Иными словами, если соискателю 95-го перцентиля случается стать первым, кого мы оцениваем, мы мгновенно понимаем, что с уверенностью можем принять его на работу – при условии, конечно, что мы не рассматриваем наличие соискателя 96-го перцентиля в подборке.
И вот в чем загвоздка. Если опять же наша цель – найти наилучшего кандидата на должность, то нам по-прежнему необходимо взвесить вероятность существования более сильного претендента. Однако наличие у нас полной информации дает возможность вычислить эти шансы напрямую. Например, вероятность того, что следующий соискатель будет из 96-го перцентиля или выше, всегда будет 1 к 20. Таким образом, решение о том, когда следует прекратить поиски, сводится исключительно к тому, сколько еще кандидатов нам осталось просмотреть. Полная информация подразумевает, что нам не нужно так уж тщательно обдумывать свои действия. Вместо этого можно применить пороговое правило, руководствуясь которым мы можем немедленно принять на работу кандидата выше определенного уровня перцентиля. И нам не нужно просматривать первоначальную группу кандидатов, чтобы установить этот порог. Но стоит тем не менее учитывать, сколько еще соискателей остаются доступными.
Математика показывает, что, когда в подборке остается еще много кандидатов, легко пройти мимо хорошего претендента в надежде найти кого-то еще лучше. Но по мере уменьшения шансов вы должны быть готовы нанять того, кто окажется просто чуть выше среднего уровня. Это всем знакомое, хотя и не слишком вдохновляющее явление: в случае скудного выбора нам приходится снижать требования. Так же верно и обратное: если в море полно рыбы, то планку требований можно поставить выше. Но в обоих случаях, что особенно важно, именно математика говорит насколько.
Самый простой способ понять, как все это работает на практике, – попытаться начать с конца. Если вы дошли до последнего соискателя, то вам, конечно же, не остается ничего другого, кроме как принять его на работу. Но на собеседовании с предпоследним кандидатом вопрос уже ставится иначе: а выше ли он 50-го перцентиля? Если да, можете нанять его; если же нет, то стоит обратить внимание на последнего кандидата, поскольку его шансы оказаться выше 50-го перцентиля будут по определению равны 50/50. Аналогичным образом вам следует выбрать третьего от конца соискателя, если он окажется выше 69-го перцентиля, четвертого от конца – если он будет выше 78-го, и т. д. (будучи тем избирательнее, чем больше соискателей еще осталось). Но, несмотря ни на что, никогда не берите на работу кандидата ниже среднего уровня, если только ваше положение не совсем уж безвыходное. (И, поскольку вы все еще заинтересованы в выборе наилучшего человека из подборки, не стоит нанимать того, кто не превосходит просмотренных вами до сих пор соискателей.)
Шанс найти в итоге лучшего кандидата из всех возможных в этом варианте (при наличии полной информации) увеличивается до 58 % – что, конечно, далеко не гарантия успеха, но это значительно лучше тех 37 %, которые дает нам правило 37 % в игре без информации. И если у вас есть все факты, вероятность добиться своей цели выше, даже когда число претендентов произвольно растет.
Премиум
О проекте
О подписке