Мы только что видели, как можно воспользоваться этим для доказательства правил сложения и умножения, т. е. правил алгебраического вычисления; это вычисление есть орудие преобразования, которое применяется в гораздо большем числе разнообразных комбинаций, чем простой силлогизм; но это орудие еще чисто аналитическое, оно не способно научить нас ничему новому. Если бы математика не имела ничего другого, она тотчас же остановилась бы в своем развитии; но она получает новое средство в том же процессе, т. е. в рассуждении путем рекурренции, и потому может непрерывно продолжать свое поступательное движение.
В каждом шаге, если его хорошенько рассмотреть, мы находим этот способ рассуждения – или в той простой форме, которую мы только что ему придали, или в форме более или менее видоизмененной.
В нем, следовательно, по преимуществу заключается математическое рассуждение, и нам следует изучить его ближе.
Существенная черта умозаключения путем рекурренции заключается в том, что оно содержит в себе бесчисленное множество силлогизмов, сосредоточенных, так сказать, в одной формуле.
Чтобы лучше можно было себе это уяснить, я сейчас расположу эти силлогизмы один за другим в виде некоторого каскада. Это, в сущности, – гипотетические силлогизмы.
Теорема верна для числа 1.
Если же она справедлива для 1, то она справедлива для 2.
Следовательно, она верна для 2.
Если же она верна для 2, то она верна для 3.
Следовательно, она верна для 3 и т. д.
Очевидно, что заключение каждого силлогизма служит следующему меньшей посылкой.
Большие посылки всех наших силлогизмов могут быть приведены к одной формуле:
Если теорема справедлива для n − 1, то она справедлива для n.
Таким образом, очевидно, что в рассуждении путем рекурренции ограничиваются выражением меньшей посылки первого силлогизма и общей формулы, которая в виде частных случаев содержит в себе все большие посылки.
Этот никогда не оканчивающийся ряд силлогизмов оказывается приведенным к одной фразе в несколько строк.
Теперь легко понять, почему всякое частное следствие, вытекающее из теоремы, может быть, как я изложил выше, проверено чисто аналитическим процессом.
Если, вместо того чтобы доказывать справедливость нашей теоремы для всех чисел, мы желаем обнаружить ее справедливость, например, только для числа 6, для нас будет достаточно обосновать 5 первых силлогизмов нашего последовательного ряда; если бы мы пожелали доказать теорему для числа 10, надо было бы взять их 9; для большого числа надо было бы взять их еще больше; но как бы велико ни было это число, мы всегда в конце концов его достигли бы, и аналитическая проверка была бы возможна.
Однако как бы далеко мы ни шли, мы никогда не могли бы дойти до общей применимой ко всем числам теоремы, которая одна только и может быть предметом науки. Чтобы ее достигнуть, понадобилось бы бесконечно большое число силлогизмов – нужно перескочить бездну, которую никогда не будет в состоянии заполнить терпение аналитика, ограниченное одними средствами формальной логики.
Вначале я поставил вопрос, почему нельзя было бы вообразить ум, достаточно мощный для того, чтобы сразу подметить всю совокупность математических истин.
Ответ теперь нетруден; шахматный игрок может рассчитать вперед четыре, пять ходов, но, каким бы необыкновенным его ни представляли, он всегда предусмотрит только конечное число ходов; если он применит свои способности к арифметике, то он не будет в состоянии подметить в ней общих истин путем одной непосредственной интуиции; он не будет в состоянии обойтись без помощи рассуждения путем рекурренции при доказательстве самой незначительной теоремы, ибо это и есть то орудие, которое позволяет переходить от конечного к бесконечному.
Это орудие всегда полезно, ибо оно позволяет нам сразу пройти любое число ступеней и избавляет нас от долгих, скучных и однообразных проверок, которые скоро стали бы практически невыполнимыми.
Но оно делается неизбежным, раз мы имеем в виду общую теорему, к которой аналитическая проверка нас непрерывно приближала бы, никогда не позволяя ее достигнуть.
В этой области арифметики кто-нибудь, пожалуй, счел бы себя далеким от анализа бесконечно малых; между тем мы сейчас видели, что идея математической бесконечности уже здесь играет весьма важную роль, и без нее не было бы арифметики как науки, так как не было бы идеи общего.
Суждение, на котором основан способ рекурренций, может быть изложено в других формах; можно сказать, например, что в бесконечно большом собрании различных целых чисел всегда есть одно, которое меньше всех других. Можно легко переходить от одного выражения к другому и таким образом создавать иллюзию доказательства законности рассуждения путем рекурренции. Но в конце концов всегда придется остановиться; мы всегда придем к недоказуемой аксиоме, которая, в сущности, будет не что иное, как предложение, подлежащее доказательству, но только переведенное на другой язык.
Таким образом, нельзя не прийти к заключению, что способ рассуждения путем рекурренции несводим к закону противоречия.
Это правило не может происходить и из опыта; опыт нас может научить только тому, что это правило справедливо, например, для 10, для 100 первых чисел; он не может простираться на бесконечный ряд чисел, а лишь на большую или меньшую часть этого ряда, всегда ограниченную.
Если бы дело шло только об этом, закон противоречия был бы достаточен – он всегда позволил бы нам развить столько силлогизмов, сколько мы желаем; лишь когда дело идет об охвате бесконечности одной формулой, лишь перед бесконечным рушится этот закон; но там становится бессилен и опыт. Это правило, недоступное ни для аналитического, ни для опытного доказательства, есть истинный образец синтетического априорного суждения. С другой стороны, нельзя видеть в нем только соглашение, как в некоторых постулатах геометрии.
Почему же это суждение стоит перед нами с непреодолимой очевидностью? Здесь сказывается только утверждение могущества разума, который способен постичь бесконечное повторение одного и того же акта, раз этот акт оказался возможным однажды. В силу этого могущества разум обладает непосредственной интуицией, а опыт может быть для него только поводом воспользоваться ею и осознать ее.
Но скажут: если чистый опыт не может оправдать суждения путем рекурренции, то будет ли то же самое относительно опыта, поддерживаемого индукцией? Мы последовательно видим, что теорема верна для чисел 1, 2, 3 и т. д.; мы говорим: закон очевиден, и присваиваем ему тот же ранг, какой свойствен всякому физическому закону, опирающемуся на наблюдения, число которых очень велико, но все же ограничено.
Нельзя не признать, что здесь существует поразительная аналогия с обычными способами индукции. Однако есть и существенное различие. Индукция, применяемая в физических науках, всегда недостоверна, потому что она опирается на веру во всеобщий порядок Вселенной – порядок, который находится вне нас. Индукция математическая, т. е. доказательство путем рекурренции, напротив, представляется с необходимостью, потому что она есть только подтверждение одного из свойств самого разума.
Выше я сказал, что математики стараются всегда обобщать полученные ими предложения; например, мы только что доказали равенство
a + 1 = 1 + a,
а затем воспользовались им для обоснования равенства
а + b = b + а,
которое, очевидно, является более общим.
Таким образом, математика, как и другие науки, может идти от частного к общему.
Это – факт, который в начале этого сочинения казался нам непонятным, но который теряет всю таинственность для нас, после того как была установлена аналогия между доказательством путем рекурренции и между обычной индукцией.
Нет сомнения, что математическое рассуждение посредством рекурренции и индуктивное физическое рассуждение покоятся на различных основаниях; но ход их параллелен – они движутся в том же направлении, т. е. от частного к общему.
Рассмотрим это несколько ближе. Чтобы доказать равенство
а + 2 = 2 + а,
нам достаточно применить два раза правило
a + 1 = 1 + a (1)
и написать
a + 2 = a + 1 + 1 = 1 + a + 1 = 1 + 1 + a = 2 + a (2).
Однако равенство (2), выведенное таким образом чисто аналитически из равенства (1), не есть просто его частный случай: это нечто иное.
Поэтому нельзя сказать, что мы даже в действительно аналитической и дедуктивной части математических рассуждений двигались от общего к частному в обычном смысле слова.
Два члена равенства (2) суть просто сочетания, более сложные, чем два члена равенства (1), и анализ служит только для отделения элементов, которые входят в эти сочетания, и для изучения их соотношений.
Следовательно, математики действуют, применяя процесс «конструирования»; они «конструируют» сочетания все более и более сложные. Возвращаясь затем путем анализа этих сочетаний – этих, так сказать, совокупностей – к их первоначальным элементам, они раскрывают отношения этих элементов и выводят отсюда отношения самих совокупностей.
Это – процесс чисто аналитический, однако он направлен не от общего к частному, ибо совокупности, очевидно, не могут быть рассматриваемы как нечто более частное, чем их составные элементы.
Этому процессу «конструирования» справедливо приписывали большое значение и желали в нем видеть необходимое и достаточное условие прогресса точных наук.
Несомненно, что оно необходимо; но оно не является достаточным.
Для того чтобы конструирование могло быть полезным, чтобы оно не было бесплодным трудом для разума, чтобы оно могло служить опорой для дальнейшего поступательного движения, надо, чтобы оно прежде всего обладало некоторым родом единства, которое позволяло бы видеть в нем нечто иное, чем простое наращивание составных частей. Говоря точнее, надо, чтобы в анализе конструкции выявлялось некоторое преимущество сравнительно с анализом ее составных элементов.
В чем же может заключаться это преимущество?
Зачем, например, надо рассуждать не об элементарных треугольниках, а о многоугольнике, который ведь всегда разложим на треугольники?
Это делается потому, что существуют свойства, принадлежащие многоугольникам с каким угодно числом сторон, которые можно непосредственно применить к любому частному многоугольнику.
Весьма часто, напротив, только ценой продолжительных усилий можно бывает найти эти свойства, изучая непосредственно соотношения элементарных треугольников. Знание общей теоремы освобождает нас от этих усилий.
Если четырехугольник есть не что иное, чем соединенные рядом два треугольника, то это потому, что он принадлежит к роду многоугольников.
Конструирование становится интересным только тогда, когда его можно сравнить с другими аналогичными конструкциями, образующими виды того же родового понятия.
Необходимо еще, чтобы было возможно доказывать родовые свойства, не будучи вынужденным обосновывать их последовательно для каждого вида.
Чтобы достигнуть этого, необходимо вновь подняться от частного к общему, пройдя одну пли несколько ступеней.
Аналитический процесс «конструирования» не вынуждает нас опускаться ниже, а оставляет все на том же уровне.
Мы можем подняться выше только благодаря математической индукции, которая одна может научить нас чему-либо новому. Без помощи такой индукции, отличной в известных отношениях от индукции физической, но столь же плодотворной, как и последняя, процесс конструирования был бы бессилен создать науку.
Заметим, наконец, что эта индукция возможна только тогда, когда одна и та же операция может повторяться бесконечное число раз. Вот причина, почему теория шахматной игры никогда не может стать наукой; там различные ходы одной и той же партии не похожи друг на друга.
О проекте
О подписке