Интересной геологической особенностью протоконтинентов являлось то, что они состояли из фрагментов океанической и континентальной коры. Иначе говоря, механизм тектоники плит уже был запущен. Не вдаваясь в подробности глубинного движителя этого механизма (процессы в мантии и ядре Земли), следует отметить, что необходимым условием его запуска является дифференциация коры на относительно тяжелую и плотную океаническую (2900 кг/м3) и легкую континентальную (2500–2700 кг/м3). В геологии их также именуют «темной» и «светлой» – по цвету основных породообразующих минералов. Океаническая кора по большей части состоит из темно-зеленых и иссиня-черных минералов, богатых магнием, железом и кремнием, – пироксенов (Ca,Na,Mg,Fe2+)(Mg,Fe3+,Al)Si2O6, оливинов (Mg,Fe)2SiO4, основных плагиоклазов (Na,Ca,)Al(Si,Al)Si2O8, а континентальная – из серых, белых и красноватых кремний- и алюминийсодержащих силикатов (таких как кварц – SiO2, калиевый полевой шпат – KAlSi3O8, альбитовый плагиоклаз – NaAlSi3O8). Отсюда и другое название этих главных минеральных комплексов: мафический (аббревиатура от лат. magnesium – магний, ferrum – железо и суффикс ic) и фельзитовый (от лат. ferrum – железо, alumen – квасцы, silex – кремень и тот же суффикс). Анализ распределения этих минералов в магматических источниках, земных слоях разного возраста и космических телах, включая астероиды, показывает, что «темная материя» здесь первична, а «светлая» – результат ее дифференциации, преобразования в недрах и на поверхности Земли.
Сами по себе ни минералы, ни состоящие из них горные породы, ни земная кора, которая из них, в свою очередь, построена, превращаться во что-то другое не будут: нужно либо отправить их обратно в недра на переплавку, либо изменить состав на поверхности. Первичная коматиит-магнезиально-базальтовая протокора, которая, вероятно, существовала 4,4 млрд лет назад, мало отличалась по составу от морских базальтов. Это и были базальты, только формировались они при более высоких температурах, чем современные, поскольку мантия в хадейском и архейском эонах была горячее. Из протокоры образовывались небольшие острова, которые хаотически перемещались конвекционными мантийными потоками и буквально таяли в них. Но если все слои земной коры были до поры до времени – до начала архейского эона – по составу, физическим и химическим свойствам почти одинаковыми, то можно ли заставить их погружаться и всплывать относительно друг друга? Тем более что главная фельзитовая порода – гранит – термодинамически несовместима с ультрамафическими мантийными минералами и не может напрямую выплавиться из последних, а слишком горячая мантия препятствует субдукции.
Оказывается, все-таки можно. В чем принципиальная разница Земли и несколько уступающего ей по размеру Марса? Не только в том, что на Голубой планете плиты движутся, а на Красной – нет, и даже не в наличии Мирового океана на первой из них и «Мировой суши» – на второй, но и в том, что на Земле открыто примерно 5000 разных минералов, а на Марсе – почти на порядок меньше. Про Луну и говорить нечего – их там около 150. Причем появление двух третей земных минералов (3000) прямо или косвенно связано с наличием на ней жизни. Жизнь – архейские бактериальные сообщества – и запустила, по сути, тектонику плит современного типа.
Во-первых, в поисках пропитания – необходимых микроэлементов и электронов – для обеспечения обмена веществ бактерии (а кроме них в архее никого пока не было) разлагали горные породы и минералы. Извлекать определенные элементы можно с помощью ферментов, которые, в отличие от химических катализаторов, способны ускорять реакции при обычных условиях, однако требуются в незначительных количествах даже при катализе большой массы вещества, и хелатных комплексов (от греч. χηλή – раздвоенный; такие молекулы структурно похожи на клешни, которые прочно удерживают ионы металлов). Свидетельства бактериальной деятельности навсегда запечатлены в древних базальтах в виде субмиллиметровых в диаметре извилистых ходов, в которых сохранились глинистые минералы – следы переработки базальта, а иногда и органическое вещество (конечно, только в виде почти кристаллических сгустков органического углерода – керогенов). Подобные следы, чтобы быть уверенными в их принадлежности микробам, ученые отыскали и в свежем вулканическом стекле: поскольку, кроме кремнезема, в нем содержится большое количество редких в окружающей среде элементов (например, закисное железо, Fe2+), как только базальтовая лава начинает остывать, первые же попавшие на ее поверхность бактериальные споры прорастают, и начинается бурное пиршество. (Каждый кубометр современного базальтового стекла – с содержанием до 17 % железа – может пропитать до 2,5 × 1016 анаэробных железобактерий.) Во-первых, бактерии ускоряют выветривание силикатных минералов (подобных вышеназванным пироксенам, оливинам, плагиоклазам) на порядок и проникают в них гораздо глубже, чем любые активные вещества под действием физических и химических сил. По прошествии всего нескольких лет горная порода превращается в насыщенное водой «нанорешето», разуплотняется, а такие продукты ее выветривания, как иллитовые и смектитовые глины, представляют собой субстрат-накопитель, ускоряющий в морской среде осаждение ионов калия. В дальнейшем новообразованная минеральная затравка способствует выплавке гранитного материала вместо базальтового.
Во-вторых, бактериальные сообщества принялись за создание совершенно новых горных пород и минералов – карбонатов, фосфатов, сульфидов, железных и других руд. В большинстве своем эти разности имеют меньшую плотность, чем мафические пироксены и оливины.
На протоконтинентах, подобных Акасте, разнообразие фельзитовых пород ограничивалось кварцевым диоритом, трондьемитом и гранодиоритом, образовавшимися при частичном плавлении толеитового базальта, из-за неглубокого заложения зон субдукции.
Когда же эти зоны, представляющие собой плавильный котел тектонических процессов, опустились в область более высоких давлений, то из исходного комплекса минералов стали выплавляться более легкие и плавучие граниты, а также связанные с их образованием вулканические породы (андезиты, риолиты) и гнейсы. Однако, чтобы зона субдукции ушла глубже в недра Земли, на нее нужно «надавить», скажем, положить сверху горную гряду: чем выше такая гряда, тем, благодаря явлению изостазии, сильнее продавится под ней астеносфера и дальше вниз нырнет под континентальную кору океаническая. Горы же образуются в результате столкновения участков континентальной коры, пусть это даже протоконтиненты, или последних с вулканическими арками. Далее из пород гранитного ряда и гнейсов с высоким разнообразием минералов и начинают складываться ядра континентов – древние кристаллические щиты. А гнейсы к тому же являются первыми свидетельствами, пусть и преобразованными, появления осадочных отложений (древнейшие – 3,85 млн лет, Исуа). Ни на Марсе, ни на Венере, ни на Луне граниты и гнейсы не появились: поверхность этих небесных тел застыла на стадии мафической протокоры. На Земле же вследствие воздействия биосферы на литосферу и преобразования мафических пород не только возник фельзитовый ряд, но и процесс (тектоника плит) пошел и значительно ускорился.
Названный выше зеленокаменный пояс Барбертон и кратоны Пилбара и Каапвааль и есть остатки древнейшей океанической и континентальной коры соответственно. В первых присутствуют подушечные базальтовые лавы (при застывании лавы в морской среде ее поверхность приобретает вид плотно уложенных подушек) и полосчатые железистые формации, во вторых – граниты и разнообразные мелководные осадочные породы. А самая древняя ископаемая тектоническая граница плит возрастом 2,7 млрд лет выявлена с помощью сейсмофизических методов под Канадским щитом – в провинциях Квебек и Онтарио.
Превзойти же геологические силы жизнь смогла, обретя иной источник энергии. Все тектонические процессы – движение плит, горообразование и др. – идут благодаря тепловому потоку, поступающему из недр Земли (радиоактивный распад и остаточное аккреционное тепло, выделившееся при столкновении планетезималей и протопланет). Этот поток оценивается в 8,7 × 10–5 Вт/м2, но тектоника успевает захватить не более десятой доли энергии (~1 × 10–5 Вт/м2). Остальное рассеивается в космосе. Жизненные силы через различные формы фотосинтеза подпитываются напрямую от энергии Солнца – 340 Вт/м2. Причем за время эволюции КПД организмов возрос: от анаэробного фотосинтеза, зависимого от различных соединений, как доноров электронов, живые существа перешли на кислородный его вариант. В этом случае используется неисчерпаемый океан электронов – вода. Быстрое истощение некоторых элементов (железо, азот, фосфор), необходимых для функционирования организмов, должно было бы ограничить дальнейший рост КПД, но благодаря ускорению круговорота этих элементов (за счет совершенствования трофической пирамиды и появления новых организмов – деструкторов отмершего органического вещества) и эта проблема была решена. На сегодняшний день биосфера потребляет в год 26,8 × 10–5 Вт/м2 только солнечной энергии. Это всего 0,07 % от энергии Солнца, поскольку 30 % рассеивается атмосферой и поверхностью Земли, а еще 69,93 % уходит на нагрев планеты и теряется в виде длинноволнового излучения.
И все равно организмы потребляют энергии на порядок больше, чем могут получить все континенты, горы и прочие геологические образования вместе взятые. Именно поэтому биосфера может себе позволить атмосферу, химически неравновесную с горными породами: это неравновесие и есть основа биохимического выветривания. [Названный выше уровень потребления энергии биосферой рассчитан исходя из данных по годовой фиксации углерода при фотосинтезе – 9 × 1015 моль; энергии, необходимой для связывания одного моля углерода с органической молекулой (пентоза), – 477 000 Дж; и площади планеты – 5,1 × 1014 м2, умноженной на 3,15 × 107 с в году.]
Перестройка планеты организмами стартовала в самом начале архейского эона.
О проекте
О подписке