Читать книгу «Нереальная реальность. Вся трилогия в одной книге» онлайн полностью📖 — Андрея Кананина — MyBook.
image

Глава 10. Галактики

Самым логичным выглядит предположение, что первые звёзды, зародившиеся в космосе, под воздействием сил гравитации стали объединяться в скопления – галактики. Однако, это не так.

Современные астрономические данные показывают, что первые протогалактики сформировались не позднее 400 тыс. лет после Большого Взрыва, то есть раньше, чем появились первые звёзды. То есть, прообразы звёздных скоплений возникли в самом начале существования Вселенной. Как ни парадоксально это звучит, галактики старше самих звёзд, их образующих.

Наилучшим образом столь парадоксальный процесс формирования галактик объясняет теория инфляции. Согласно ей, их появление было предопределено ещё изначальными квантовыми возмущениями в процессе инфляционного расширения. Можно сказать, что именно тогда обозначился базовый каркас крупномасштабной структуры космоса.

Много позже в тех областях Вселенной, где плотность вещества была немного выше средней, гравитация начала стягивать избытки материи в локальные регионы. Изменение плотности в ограниченной области зарождающегося пространства неизбежно приводило к образованию микроскопических комочков материи. Внутри этих сгустков по мере их охлаждения начал конденсироваться газ.

Вокруг этих мизерных неоднородностей происходил процесс гравитационного сжатия и образования газовых туманностей. Потом возникли звёзды, а туманности стали галактиками. Когда под воздействием сил гравитации вещество концентрировалось в ограниченных областях, оно изначально немного вращалось, поскольку обладало небольшой величиной кинетического момента. Поэтому, самым естественным образом сформировались вращающиеся дискообразные структуры. Сегодня это огромные звёздные семейства. Типичная галактика в миллиард раз массивнее и в миллиард раз ярче Солнца.

Исходя из этого объяснения, можно сделать вывод о том, что все звёздные скопления должны быть примерно похожи друг на друга. Но это совсем не так. До сих пор остаётся загадкой, почему многообразие галактических структур настолько велико.

Все галактики можно условно разделить по геометрической форме на три вида: спиральные, эллиптические и «неправильные».

В наблюдаемой Вселенной 77% составляют спиральные галактики, 20% – эллиптические и всего 3% – «неправильные».

По времени образования эллиптические галактики относятся к ранним, а спиральные и «неправильные» к поздним. Однако, самыми первыми галактиками во Вселенной были именно спиральные и «неправильные». Потом в процессе своей эволюции они постепенно слились в эллиптические.

Наблюдаемые сегодня молодые спиральные и «неправильные» галактики образовались позже старых эллиптических. В спиральных и «неправильных» галактиках много молодых звёзд, а также областей, где они только формируются. В эллиптических галактиках преобладают старые звёзды.

Спиральные галактики представляют собой форму диска с круговым и плоским распределением звёзд. Они достаточно тонкие. Удивительно, что именно галактик этого вида большинство в наблюдаемой Вселенной. Дело в том, что их диски очень хрупкие по своей структуре. При слиянии галактик они легко разрушаются.

Как правило, самые массивные галактики формируются в форме эллипса. Отсюда их название.

Эллиптические галактики не имеют диска, поэтому они не вращаются. Звёзды внутри них перемещаются по случайным орбитам.

Большинство эллиптических галактик находится в плотных областях Вселенной, образуя сверхскопления. Эллиптические галактики представляют собой наиболее эволюционно развитые макрокосмические объекты. Многие из них сформировались за счёт поглощения меньших по размеру галактик. При слиянии двух дисковых галактик упорядоченное движение звёзд по орбитам меняется на хаотическое. Именно это свойство присуще эллиптическим галактикам.

Все галактики под воздействием силы гравитации стремятся к слиянию. Например, в настоящий момент Млечный Путь поглощает небольшую эллиптическую галактику в созвездии Стрельца.

При слиянии галактик их гигантские молекулярные облака сталкиваются и конденсируются в новые звёзды. Несмотря на то, что Млечный Путь в настоящий момент мало взаимодействует с другими галактиками, ежегодно в нём образуется около десяти новых звёзд.

Сколько галактик видно невооружённым глазом с Земли?

Ответ обескураживает. Только четыре из сотни миллиардов. Причём, в Северном полушарии, помимо Млечного Пути, можно увидеть лишь Туманность Андромеды. В Южном полушарии человеческому глазу доступны Большое и Малое Магеллановы Облака.

Глава 11. Млечный Путь

Наш дом – Солнечная система – находится в большом звёздном городе под названием Млечный Путь.

Это спиральная галактика, представляющая собой огромный диск. Её диаметр составляет 100 тыс. световых лет. Толщина Млечного Пути около тысячи световых лет.

Наша Галактика может содержать до 400 млрд. звёзд. Но придётся вновь разочаровать романтиков – для наблюдений доступна лишь микроскопическая часть. Невооруженным взглядом с Земли можно увидеть только 6 тыс. звёзд, а из них – всего две тысячи одновременно. Это составляет ничтожные 0.0001% от всех звёзд Млечного Пути.

Проблема в том, что Солнечная система расположена в галактической плоскости, то есть в самом неудачном месте для астрономических наблюдений. Именно здесь сконцентрировано вещество, из которого образуются звёзды – газ и пыль. Газ прозрачен, а вот пылевые облака закрывают от нас центр Галактики.

Как ни странно, дальний космос более открыт для исследователей, чем ближний. Поэтому мы не можем в полной мере насладиться грандиозностью и красотой нашего звёздного дома. Если бы не было этой межзвёздной пыли, то каждую ночь с Земли мы наблюдали огромный огненный шар в созвездии Стрельца. Центр Млечного Пути затмил бы Луну и был бы самым ярким объектом ночного неба.

Центральная часть галактического диска утолщена и образует шарообразное ядро. Плотность вещества там во много раз больше, чем вблизи Солнца. По мере удаления от ядра концентрация звёзд уменьшается.

В нашем регионе в шестнадцати кубических парсек располагается всего одна звезда. Тогда как в центре Млечного Пути в одном кубическом парсеке содержится 10 тыс. звёзд. То есть, мы живём на пустынной окраине огромного мегаполиса.

От центра Галактики отходят четыре спиральных рукава. Солнечная система находится вблизи рукава Ориона, но не в нём самом. Звёзды в галактическом диске вращаются по круговым орбитам, то есть можно сказать, что Млечный Путь вращается вокруг своей оси. Солнечная система совершает один оборот вокруг центра Галактики за 250 млн. лет.

Расстояние от Солнца до центра Млечного Пути составляет 25 000 световых лет, то есть мы находимся примерно на одном расстоянии от центра Галактики и от её края.

Солнце – одиночная звезда. Таких в Галактике не более 30%. Остальные системы кратные, то есть состоящие из двух и более звёзд-партнёров. Большинство из них двойные, но встречаются даже шестикратные звёздные системы.

Возраст большинства звёзд Галактики составляет от 7 до 10 млрд. лет. Поэтому можно сказать, что наше Солнце – относительно молодая звезда. А самая старая в Млечном Пути образовалась 13.2 млрд. лет назад. То есть, она моложе Большого Взрыва всего на 500 млн. лет.

Млечный Путь с большой скоростью сближается с галактикой Туманность Андромеды. Примерно через 2 млрд. лет две галактики столкнутся. Однако, никакой катастрофы не произойдёт.

Пройдя сквозь друг друга, они на время разойдутся, и, вызвав мощнейшее гравитационное взаимодействие, выделят огромное количество вещества в межзвёздное пространство. А затем окончательно сольются, образовав гигантскую эллиптическую галактику.

Глава 12. Крупномасштабная структура космоса

Млечный Путь относится к гравитационно связанному галактическому скоплению, называемому Местной группой. В её состав входит около 50 галактик.

Самая крупная в Местной группе – галактика М31, известная как Туманность Андромеды. Это наша ближайшая соседка. Расстояние до неё – 2.52 млн. световых лет. Млечный Путь и Туманность Андромеды – две гигантские спиральные галактики. М31 больше нашей примерно на треть.

В состав Местной группы входят также галактики среднего размера. Самые известные – М33 (галактика Треугольника), а также Большое и Малое Магеллановы Облака.

Кроме того, к Местной группе относятся отдельные карликовые галактики. У нашего Млечного Пути есть 14 маленьких спутников. У Туманности Андромеды 18 карликовых соседей. Есть несколько небольших отдельных галактик, которые прямо не связаны с Млечным Путём, Туманностью Андромеды и Треугольником.

Общий поперечник Местной группы составляет около трёх миллионов световых лет.

По движению Земли сквозь фоновое излучение астрономы установили, что Местная группа движется в сторону созвездия Гидры со скоростью 635 км/с. Следовательно, наша Земля всего за один день пролетает в просторах безбрежного космоса расстояние в 51 840 000 километров, а за год – 18 900 000 000 километров. И мы этого даже не замечаем.

Местная группа является частью более масштабного образования – галактического сверхскопления Девы, насчитывающего 30 тыс. галактик.

Его размер составляет 110 млн. световых лет. Общий вес входящих в сверхскопление Девы звёзд равен 20 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 кг. В космических масштабах это ничтожная масса. Подобных сверхскоплений в наблюдаемой Вселенной – миллионы. Они являются типичными примерами крупномасштабных космических структур. Сверхскопления не связаны между собой гравитацией, и, удаляясь друг от друга, принимают участие в общем расширении Вселенной.

В свою очередь, Сверхскопление Девы притягивается к Великому аттрактору. Это гравитационная аномалия, находящаяся от нас на расстоянии в 250 млн. световых лет. Великий аттрактор – очень древний регион Вселенной, состоящий из массивных, старых галактик. Он оказывает огромное гравитационное воздействие на окружающее пространство.

Самой крупномасштабной структурой космоса является Великая стена Слоуна. Она представляет собой группу галактик, визуально напоминающую огромную стену, и простирается на 1.37 млрд. световых лет. Расстояние от Земли до Великой стены Слоуна составляет один миллиард световых лет.

Глава 13. Звёзды

Наиболее распространёнными объектами во Вселенной являются звёзды. Более 98% массы всего космического вещества сосредоточено именно в них.

Первые звёзды образовались в протогалактиках не позднее чем через 200 млн. лет после Большого Взрыва.

Под воздействием силы гравитации в разрежённых водородно-гелиевых газовых облаках конденсировались сгустки вещества. Постепенно они преобразовывались в плотные вращающиеся плазменные шары – протозвёзды.

По мере возрастания температуры из-за сильного сжатия внутри этих сферических объектов начиналась реакция термоядерного синтеза, то есть превращения водорода в гелий. Ядро протозвезды разогревалось до температуры 10 млн. градусов. В этот момент происходил нуклеосинтез водорода с образованием гелия, и звезда начинала светиться. Термоядерные реакции устанавливали внутреннее равновесие. Ядро прекращало гравитационное сжатие, и звезда становилась стабильной.

Солнце принадлежит к третьему поколению звёзд со времени Большого Взрыва.

Звёзды первого поколения были чрезвычайно массивными, состояли из водорода, гелия, следов лития и практически не содержали металлов. Они быстро исчерпали свой запас топлива и погибли в результате катастрофических взрывов, рассеивая синтезированные тяжёлые элементы в космосе.

Второе поколение звёзд сформировалось из этого вещества. Оно было более богато металлами. Самые молодые звёзды, такие как наше Солнце, содержат самое большое количество тяжёлых элементов.

Когда мы смотрим на небо, все звёзды выглядят примерно одинаково. На самом деле, во Вселенной существует несколько их видов.

Красные гиганты.

Это самые большие звёзды в космосе. Их радиус может составлять 800 радиусов Солнца, а светимость превышать солнечную в миллион раз.

Звёзды становятся красными гигантами на поздней стадии своей эволюции, когда в них полностью выгорел весь водород и началось горение гелия.

Красные гиганты имеют плотное горячее ядро и огромную внешнюю оболочку, температура которой относительно невысокая.

Коричневые карлики.

Самые маленькие по массе разновидности звёзд.

Можно даже сказать, что это неудавшиеся звёзды. Они состоят только из водорода. У них нет внутреннего источника собственной энергии в виде термоядерного синтеза из-за низкой температуры. Это очень тусклые объекты, постоянно остывающие на протяжении всей своей жизни.

По своему размеру коричневый карлик всего лишь в десять раз больше Земли.

В галактике содержатся миллиарды коричневых карликов. Сейчас их роль невелика. Но когда Вселенная значительно состарится, именно в коричневых карликах будет содержаться большая часть всего оставшегося вещества.

Ближайшие к Земле коричневые карлики находятся всего в 12 световых годах от нас. Это компоненты кратной звезды ε Индейца.

Белые карлики.

Многие звёзды в конце свой жизни превращаются в белых карликов. Такая судьба ждёт, в частности, наше Солнце.

Белые карлики состоят из вырожденного вещества и не имеют собственного источника термоядерной энергии. В таком состоянии звезда уже не излучает энергию в силу отсутствия топлива. Однако, остывая, продолжает светиться ещё очень значительное время.

Белый карлик, по массе равный Солнцу, имеет радиус примерно, как у Земли. Его светимость в 10 000 раз меньше солнечной.

В конце эволюции нашей Галактики в ней будет содержаться триллион белых карликов.

Квазары.

Это самые яркие объекты во Вселенной, они видны на огромных расстояниях. Поэтому часто квазары называют маяками космоса. С их помощью удобно изучать эволюцию и структуру нашего мира.

Квазары расположены практически на границе видимой части Вселенной. Ближайший к Солнцу квазар 3С273 находится на расстоянии в 2 млрд. световых лет. Самый далёкий из известных, расположен в 28-и млрд. световых лет.

Типичная яркость квазара составляет 10 000 000 000 000 000 000 000 000 000 000 000 000 000 ватт. Это соответствует светимости ста галактик одновременно. Если расположить квазар 3C273 на расстоянии в 33 световых года от Земли, то он будет сиять в небе так же ярко, как Солнце. Его светимость в 100 раз больше светимости всего Млечного Пути, а мощность излучения превышает мощность излучения триллиона солнц.

Квазары горят примерно 100 млн. лет, а потом угасают. Размер типичного квазара примерно равен Солнечной системе. В нём каждую минуту поглощается масса, составляющая шестьсот Земель.

Квазары – очень старые объекты. Они были чрезвычайно распространены в ранней Вселенной. Мы видим их такими, какими они были миллиарды лет назад. На самом деле, в режиме реального времени, все они уже погасли.

Большинство галактик, включая Млечный Путь, изначально родились как квазар, но давно миновали эту активную стадию своей эволюции.

Нейтронные звёзды.

Если сжать звезду до колоссальной плотности, то её вещество примет стабильную, хотя и очень экзотическую структуру. Оно будет находиться исключительно в форме нейтронов. Поэтому нейтронная звезда напоминает атомное ядро огромного размера. Такие сверхплотные объекты порождаются от одной из четырёхсот звёзд Млечного Пути. Их намного меньше, чем звёзд-карликов, но в масштабах Галактики – миллионы.

Типичная нейтронная звезда в полтора раза массивнее Солнца. При этом её радиус составляет всего от 10-и до 30-и километров. Ядро нейтронной звезды столь плотное, что одна ложка её вещества весит 90 млрд. килограмм.

Пульсары.

Это нейтронные звёзды, которые испускают узконаправленные потоки радиоизлучения и вращаются с огромной скоростью. Со стороны кажется будто они пульсируют. Отсюда появилось название таких космических объектов.

Первый открытый пульсар показался астрономам настолько необычным, что была высказана гипотеза об искусственности его периодических импульсов. Поэтому он получил наименование LGM-1 (пер. с англ. – «маленький зеленый человечек» – 1). В настоящий момент природа пульсаров хорошо изучена. Их естественность не вызывает сомнений.

Магнитары.

Сверхплотная нейтронная звезда, обладающая очень сильным магнитным полем, называется магнитар. Продолжительность жизни магнитара незначительна и составляет всего 10 тыс. лет.

Вещество внутри магнитара предельно плотно сжато. Масса подобного объекта больше массы звезды типа Солнца, но его диаметр составляет всего 20 километров.

Магнитар очень быстро вращается, совершая несколько оборотов вокруг своей оси в течение одной секунды. Он сильно излучает в рентгеновском диапазоне.

В крупной галактике типа Млечного Пути содержится несколько миллионов магнитаров.

Сверхновые звёзды.

Термоядерный синтез со временем приводит к образованию внутри звезды большого количества тяжёлых элементов, в первую очередь, железа и никеля. При этом звезда постепенно сжимается, а плотность её центральной области необратимо возрастает. Из-за огромного давления протоны ядер железа начинают поглощать электроны, превращаясь в нейтроны.

При столь огромном давлении электроны начинают буквально вталкиваться в ядра атомов металла. Железное ядро массивной звезды коллапсирует. Температура повышается до нескольких триллионов градусов. Затем следует катастрофическое расширение при ядерной плотности. Происходит чудовищный по силе взрыв.

Взрывная волна настолько мощна, что разрывает наружные оболочки звезды. Вещество распыляется в окружающем пространстве со скоростью до 30 тыс. километров в секунду. Это и есть взрыв сверхновой.

По большому счету, сверхновая – это не звёздный объект, а процесс, последний из возможных этапов эволюции звезды.

Взрыв сверхновой – ярчайшее космическое событие. Современная аппаратура позволяет фиксировать во всей Вселенной около 300 взрывов сверхновых ежегодно. Но, применительно к отдельной галактике, это нечастое явление. Например, в Млечном Пути сверхновая взрывается в среднем один раз в пятьдесят лет. Большинство взрывов происходят в других концах Галактики, и они невидимы для нас.

Лишь несколько раз в истории человечества сверхновые вспыхивали достаточно близко, чтобы их можно было наблюдать невооруженным глазом.

Первое описание содержится в древнекитайских летописях и рассказывает о вспышке, произошедшей 7 декабря 185 года. Тогда звезда взорвалась «всего» в трёх тысячах световых годах от Солнечной системы.

В 1604 году произошла столь яркая вспышка, что в течение трёх недель сверхновую было видно днём.

Взрыв 1054 года привел к образованию красивой Крабовидной туманности.

Последняя видимая невооруженным глазом сверхновая звезда SN1987A вспыхнула в Большом Магеллановом Облаке на расстоянии в 169 тыс. световых лет от Земли в 1987 году.

Яркость взрыва сверхновой на некоторое время превосходит яркость всей галактики, в которой она находится. Его мощность достигает 10 000 000 000 000 000 000 000 000 000 000 000 ватт. Это исключительно красивое зрелище. Но не только.

1
...
...
19