Читать книгу «Экология» онлайн полностью📖 — А. В. Маринченко — MyBook.
image

Узловыми звеньями круговорота являются: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление кислорода для осуществления дыхания всеми живыми организмами, для реакции окисления органических остатков и неорганических веществ (например, сжигание топлива) и другие химические преобразования, которые ведут к образованию таких окисленных соединений, как углекислый газ, вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.

В круговороте кислорода отчетливо проявляется активная геохимическая деятельность живого вещества, его ведущая роль в этом циклическом процессе. Исходя из массы органического вещества, синтезированного в течение года (с учетом 15 % потраченных на процесс дыхания), можно заключить, что ежегодное продуцирование кислорода зеленой растительностью планеты составляет около 300 × 109 т. Лишь немногим более 25 % этого количества выделяется растительностью суши, остальное – фотосинтезирующими организмами Мирового океана (свободный кислород присутствует не только в атмосфере, в растворенном состоянии он содержится и в природных водах). Суммарный объем вод Мирового океана равен 137 × 109 л, а в 1 л воды растворено от 2 до 8 см3 кислорода. Следовательно, в водах Мирового океана находится от 2,7 × 102 до 10,9 × 102 т растворенного кислорода. Часть органического вещества захороняется, вследствие чего из годичного круговорота выводится связанный кислород.

Кислород используется для процесса горения и других видов антропогенной деятельности. За всю историю человечества до 1980 г. мировое потребление топлива составило около 84 млрд т каменного угля, 30 млрд т нефти и около 7,3 трлн м3 природного газа. На сжигание этого количества топлива было израсходовано 273 млрд т кислорода, и в результате образовано 322 млрд т углекислого газа. Около 90 % перечисленного топлива было сожжено за последние 40–60 лет. В абсолютных величинах суммарный расход топлива человечеством всех эпох к 2000 г. достиг 550–650 млрд т условного топлива. В итоге к 2000 г. суммарный расход кислорода на сжигание топлива составил 800–900 млрд т, а поступление углекислого газа в атмосферу возросло до 95–1050 млрд т.

К этому необходимо добавить расход кислорода на дыхание человека, животных, растений, на выполнение микроорганизмами окислительных реакций. При норме потребления кислорода 1 кг в сутки и общей численности населения Земли 4,8 млрд человек (начало 1986 г.) ежегодное потребление кислорода человечеством составляет около 1,8 млрд т; к 2000 г., когда на Земле стало 6 млрд человек, оно составило 2,6 млрд т в год. К этому времени потребление кислорода на промышленные и бытовые нужды, на транспорт достигло 50 млрд т в год.

К 2000 г. с учетом всех видов расхода, включая дыхание растительного мира, ежегодное потребление кислорода составляет 210–230 млрд т, тогда как вся фитосфера ежегодно продуцирует 240 млрд т этого газа.

На суше в процессе фотосинтеза происходит фиксация углекислого газа растениями с образованием органических веществ и выделением кислорода. Остатки растений и животных разлагаются микроорганизмами, в результате чего углерод окисляется до углекислого газа и снова попадает в атмосферу. Подобный круговорот углерода совершается и в водной среде. Фиксируемый растениями углерод в значительном количестве потребляется животными, которые, в свою очередь, при дыхании выделяют его в виде углекислого газа.

Круговорот углерода в гидросфере (рис. 1.3) является более сложным, чем в атмосфере, поскольку возраст этого элемента в форме углекислого газа зависит от поступления кислорода в верхние слои воды как из атмосферы, так и из нижележащей толщи, так как между сушей и Мировым океаном происходит постоянный обмен углерода. Преобладает вынос этого элемента в форме карбонатных и органических соединений с суши в океан. Поступление углерода из Мирового океана на сушу совершается в несравненно меньших количествах, и то лишь в форме углекислого газа, диффундирующего в атмосферу, а затем переносимого воздушными течениями.


Рис. 1.3. Круговорот углерода в биосфере


Живое вещество в биосфере осуществляет газовую, концентрационную, окислительную и восстановительную функции. Кислород и азот атмосферы, весь углекислый газ, по мнению Вернадского, имеют органогенное происхождение.

Ежегодная продукция живого вещества в биосфере составляет примерно 200 млрд т сухого органического вещества; за это же время в процессе фотосинтеза на планете образуется 46 млрд т органического углерода, 123 млрд т кислорода.

“Вихрь жизни”, как говорил Вернадский, захватывает освобожденные при гниении микроорганизмов элементы, поступающие в литосферу, гидросферу и атмосферу и снова включает их в круговорот веществ.

В круговороте азота чрезвычайно большую роль играют микроорганизмы: азотфиксаторы, нитрификаторы, денитрофикаторы. Все остальные организмы влияют на цикл азота только после ассимиляции его в состав своих клеток. Азот фиксируют также пурпурные и зеленые фотосинтезирующие бактерии, различные почвенные бактерии.

В биосфере в целом фиксация азота из воздуха составляет в среднем за год 140–700 мг/м3. В основном это биологическая фиксация, и лишь небольшое количество азота (в среднем не более 35 мг/м3 в год) фиксируется в результате электрических разрядов и фотохимических процессов. Высокая интенсивность фиксации отмечена в некоторых загрязненных озерах с множеством сине-зеленых водорослей. В океане, где продуктивность ниже, фиксация азота в расчете на 1 м3 меньше, чем на суше. Однако общее количество фиксированного азота является значительным и весьма важным для глобального круговорота.

В круговороте азота из огромного запаса этого элемента в атмосфере и литосфере принимает участие только фиксированный азот, усваиваемый живыми организмами суши и океана. В круговороте азота принимают участие: азот биомассы, азот биологической фиксации бактериями и живыми организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный.

На огромных массивах, где деятельность человека почти отсутствует, растения берут необходимый им азот из вносимого в почву азота извне (нитраты с дождями, аммиак из воздуха), из возвращаемого в почву азота (останки животных, растений, экскременты животных), а также из разнообразных азотфиксирующих организмов.

Наибольшее количество азота и зольных элементов содержится в биосфере лесной растительности, почти во всех типах растительности масса зольных элементов в 2–3 раза превышает массу азота. Исключение составляет тундровая растительность, в которой содержание азота и зольных элементов примерно одинаково. Наибольшее количество оборачивающихся в течение года элементов (т. е. емкость биологического круговорота) – во влажных тропических лесах, затем – в черноземных степях и широколиственных лесах умеренного климата (в дубравах).

В биосфере хорошо развит процесс циклических превращений серы и ее соединений. Резервуарный фонд серы обширен в почве и отложениях, меньший – в атмосфере, основную роль в обменном фонде серы играют особые микроорганизмы, каждый вид которых выполняет определенную реакцию окисления и восстановления; в результате микробной регенерации серы из глубоководных отложений к поверхности перемещается сероводород. В глобальном масштабе в регуляции круговорота серы участвуют геохимические и метеорологические процессы (эрозия, осадкообразование, выщелачивание, дождь, адсорбция, десорбция и т. д.), биологические процессы (продукция биомассы и ее разложение), взаимосвязь воздуха, воды и почвы. Сульфат, аналогично нитрату и фосфату, – основная доступная форма серы, которая восстанавливается автотрофами и включается в белки (сера входит в состав ряда аминокислот).

На круговорот азота и серы все большее влияние оказывает промышленное загрязнение воздуха: сжигание ископаемого топлива значительно увеличило содержание в воздухе летучих окислов азота (NO и NО2) и серы (SO2), особенно в городах. Их концентрация становится опасной для биотических компонентов экосистем.

Геохимический цикл фосфора в большей мере отличается от циклов углерода и азота. Содержание этого элемента в земной коре равно 0,093 %. Это в несколько десятков раз больше содержания азота, но в отличие от последнего фосфор не является одним из главных элементов оболочек Земли. Тем не менее его геохимический цикл включает разнообразные пути миграции в земной коре, интенсивный биологический круговорот и миграцию в гидросфере.

Фосфор – один из главных органогенных элементов. Его органические соединения играют важную роль в процессах жизнедеятельности всех растений и животных, входят в состав нуклеиновых кислот, сложных белков, фосфолипидов мембран, служат основой биоэнергетических процессов. Фосфор концентрируется живым веществом, где его содержание в 10 раз больше, чем в земной коре. На поверхности суши протекает интенсивный круговорот фосфора в системе “почва – растения – животные – почва”. В связи с тем, что минеральные соединения фосфора труднорастворимы и содержащийся в них элемент почти недоступен растениям, последние преимущественно используют его легкорастворимые формы, образующиеся при разложении органических остатков. Круговорот фосфора происходит и в системе “суша – Мировой океан”. Тут его основой является вынос фосфатов с речным стоком, взаимодействие их с кальцием, образование фосфоритов, залежи которых со временем выходят на поверхность и снова включаются в миграционные процессы.

Человек должен планировать свою хозяйственную деятельность с учетом цикличности природных процессов. Особенно тщательно ее следует учитывать в земледелии, пастбищном животноводстве, водоснабжении, навигации. Распашка, внесение минеральных удобрений, загрязнение нефтью и тяжелыми металлами весьма обедняют фауну почвы. При этом нарушаются и даже полностью выпадают звенья нормальных пищевых цепей и биогеохимических циклов. Реакция почвы на вмешательство человека необычайно велика.

Запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих их организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись как в течение жизни организмов, так и после их смерти. Нельзя забывать, что общество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, образует круговорот. Основным механизмом удержания солнечной энергии и образования фитомассы, включающей огромные количества углерода, воды и распространенных биофилов, являются биогеоценозы лесных и травянистых ландшафтов.