© Анатолий Трутнев, 2016
Создано в интеллектуальной издательской системе Ridero
Важное место в современном понимании физических реалий занимает понятие о созидательной роли взаимодействия противоположностей в организации и формировании окружающего нас мира. Именно этот фактор имеет главенствующее значение в его развитии, стабильности и равновесии. Множество тому примеров можно найти в живой и не живой природе, а также в духовном плане.
Так в результате взаимодействия положительных и отрицательных зарядов возникает электрическая энергия, а борение холода и тепла порождает климатические разнообразия планеты.
Многообразие форм Важное место в современном понимании живых организмов существовавших и существующих на Земле – это продукт соединения женских и мужских начал, а рождение и смерть, лежащие в основе бесконечной череды смен поколений, является гарантией стабильности и процветания биологических видов.
Столкновение различных мировоззрений и взглядов рождает истину, а показатель борьбы добра и зла является мерилом моральных устоев человеческого общества.
Однако следует отметить, что доминирующей основой в созидательной роли взаимодействия противоположностей в глубинных процессах физического мира является взаимодействие его основных компонент – материи и пространства.
Изложение материалов в книга построено в следующем порядке. Вначале приведены общеизвестные физические законы, процессы, явления, изложенные в учебных пособиях (А.А.Пинский Г.Ю Граковский), журналах, программах, опубликованных в доступной литературе. Затем на основе базовых принципов смоделированной системы сформулированы механизмы их действия в соответствии единства взаимодействия материи и пространства.
Физика наука, основанная на опытах, экспериментах, достоверно установленных фактах. Смоделированная система, которая положена в основу данной работы, базируется на предположении существования силовых линий пространства, объективную реальность которых экспериментально невозможно установить. В то же время следует отметить, что в подобных случаях для подтверждения теоретических обоснований процессов, протекающих в недоступных для их измерения местах, используются косвенные доказательства. Например, недра звезд. Этот прием использован и в данной работе. Так, например, результаты моделирования находят косвенное подтверждение в реально протекающих физических процессах и явлениях. Смоделированная система позволяет внести определенную ясность в сущность физических процессов, явлений и в поведение отдельных элементарных частиц, о которых в науке до сих пор нет однозначных ответов. Выводы моделирования позволяют сделать прогнозы решения проблем и путей развития познания физических свойств материальных тел, процессов и их взаимодействий в свете современных о них представлений
С позиции смоделированной системы автором написан ряд статей. которые опубликованы в сборниках конференций, проходивших в 2013—2015 гг. в США, Канаде, Германии России. пространства. Новизна этих статей заключается в том, что в них физические поля, законы, явления и процессы рассматриваются с базовых принципов смоделированной системы, согласно которых материя и пространство взаимосвязаны и находятся в непрерывном взаимодействии. Формой взаимосвязи материи и пространства является время, а взаимодействие между ними осуществляется с помощью энергии материи и энергии пространства, которые не могут существовать отдельно, а непрерывно переходят друг в друга, именно в этом и состоит фундаментальность закона сохранения энергии
Физические реалии окружающего нас мира (R) можно описать простой формулой:
R = W + P, где
W – материя;
P – пространство;
Т – время форма взаимодействия материи и пространства;
Е— энергия форма взаимосвязи материи и пространств.
Обе эти компоненты равнозначны, взаимосвязаны и взаимодействуют друг с другом.
Их нельзя сложить, их нельзя разделить, их надо рассматривать, как равнозначные части единого процесса, хотя наука в основном изучает материальную часть этого процесса.
По мнению автора, это связано с тем, что материю можно измерить, взвесить, расплавить, охладить, увидеть, придать ей движение и т. д.
Пространство, как правило, представляется как темная пустота, в которой протекают всевозможные процессы, события, явления.
Попытки осмыслить взаимосвязь материи и пространства предпринимались многими исследователями, но до настоящего времени в этом вопросе много неясностей и сомнений.
Одним из доминирующих камней преткновения здесь является характер взаимодействия между космическими телами, расположенными на значительном удалении друг от друга.
У ученых до сих пор нет единого мнения о природе действия сил тяготения, «близкого» или «дальнего» они действия.
Наибольший вклад в осмыслении данного вопроса внесли Исаак Ньютон и Альберт Энштейн. Первый математически описал закон всемирного тяготения, а второй установил связь между геометрическими характеристиками пространства и физическими свойствами материи. Однако прямого ответа о механизме воздействия одного гравитирующего материального тела на другое материальное тело они не дали.
По мнению автора, исчерпывающие ответы в этом случае можно получить, если рассматривать материю и пространство, как равноправных участников в формировании физических свойств материальных тел, всех процессов, событий и явлений, происходящих в окружающем мире. Для этого смоделируем следующую систему.
Будем рассматривать материю и пространство, как две противоположности, от взаимодействия которых зависят все процессы, происходящие во всех материальных телах, начиная от элементарных частиц и кончая галактиками.
Чтобы глубже понять роль каждой из компонент, разделим материю и пространство до последних неделимых (гипотетических) метрических величин и
обозначим их следующим образом:
g+ – положительно заряженная частица материи (гравитон);
p- – отрицательно заряженная частица пространства (простон).
Гравитон это («горячий») сгусток энергии материи, а простон это («холодный») сгусток энергии пространства Оба сгустка образовались в начальной стадии образования Вселенной.
Частицы равнозначны по величине и обратны по знаку.
Материя в смоделированной системе представляет собой совокупность гравитонов, размещенных определенным образом в пространстве, а пространство – совокупность простонов, размещенных между гравитонами и реально существующих без них.
Наличие заряда у простонов дает право представить организацию пространства в виде силовых линий, состоящих из проетонов, равномерно напряженных во всех направлениях за счет сил отталкивания.
Если поместить гравитоны между силовыми линиями пространства, то в силу их разнородности зарядов, последние будут испытывать деформацию (рис. 1.).
Рис. 1. Схема взаимодействия гравитона (g) с силовыми линиями (S) пространства
Деформация (сближение) силовых линий пространства будет сопровождаться выделением энергии, при этом будет совершаться работа по перемещению гравитона в силовых линиях пространства:
А = Fxd
Согласно второго закона Ньютона F =gха. Следовательно, на гравитон будет действовать сила в направлении движения, придавая ему ускорение.
При этом деформация силовых линий будет увеличиваться, а выделение энергии возрастать. Вместе с тем следует также отметить, что процесс этот будет постоянно замедляться из-за нарастающего сопротивления деформации силовых линий пространства.
В предлагаемой модели взаимодействия материи и пространства все материальные тела представляют собой совокупность гравитонов, размещенных в определенной последовательности в силовых линиях пространства. Именно эти два фактора – организация и размещение материи в силовых линиях пространства и определяют форму и свойства материальных тел, а так же все процессы, протекающие в них, формируют все многообразие реального мира.
В такой смоделированной системе у всех материальных тел будет просматриваться одна общая закономерность. Наибольшей деформации будут подвержены силовые линии, находящиеся в их центральной части (рис. 2).
Рис. 2. Нарастание деформации силовых линий пространства от периферии к центру материального тела.
При этом будет проявляться эффект мнимости, то есть как будто вся масса материального тела сосредоточена в его центре.
Степень деформации силовых линий пространства, окружающего материальное тело эквивалентна массе тела, а ее величина (u) пропорциональна количеству гравитонов, приходящихся на одну силовую линию пространства внутри материального тела и нарастает от периферии к центру.
U=kxS/n, где
U – степень деформации силовых линий пространства, окружающего материальное тело;
k – количество гравитонов в 1 грамме вещества;
n – количество силовых линий пространства в 1 см.
Каждому материальному телу соответствует свое гравитационно-пространственное поле с определенной степенью сжатия силовых линий пространства, окружающих данное тело.
При взаимодействии двух материальных тел их гравитационно-пространственные поля накладываются друг на друга, что происходит при этом с позиции смоделированной системы, представлено на рисунке 3.
Рис. 3. Сближение силовых линий в окружающем материальное тело пространстве в зависимости от массы тела
Пусть масса тела А больше массы тела В, следовательно – Ua> Ub. Поместим по одному гравитону между силовыми линиями пространства, окружающего материальные тела на одинаковом расстоянии (S) от их центров. В гравитационно-пространственном поле тела А силовые линии более деформированы (сближены), чем в гравитационно-пространственном поле тела В, поэтому здесь взаимодействие между гравитоном и силовыми линиями будут более интенсивными, чем в гравитационно-пространственном поле тела В. Здесь будет выделяться больше энергии, в результате чего скорость движения гравитона увеличится..
Ускорение движения гравитона в силовых линиях пространства приведет к появлению дополнительной силы, действующей на гравитон в направлении его движения.
Fдоп. = gxa
a =dS2/dt2
Таким образом, силы воздействия гравитационно-пространственного поля, окружающего материальное тело А будут больше силы воздействия гравитационно-пространственного поля материального поля В и будут составлять:
FA = FB + gxa
Обобщая все вышесказанное, можно сделать следующий вывод:
Чем массивнее материальное тело, тем сильнее воздействие силовых линий окружающего его гравитационно-пространственного поля на движение в них гравитонов. Вектор движения гравитонов в силовых линиях пространства направлен в сторону их большей деформации
Рассмотрим в рамках смоделированной системы механизм взаимодействия двух материальных тел, удаленных на значительное расстояние друг от друга, на примере Земли и Солнца.
Масса Солнца составляет 2х1030 кг, а масса Земли – 6х1024 кг. Расстояние между ними составляет 1,6 х 108 км.
Масса Солнца в 330 тысяч раз больше массы Земли, следовательно ее гравитационно-пространственный потенциал значительно превышает аналогичный потенциал Земли, а это означает, что Солнце в большей степени и на более дальнее расстояние деформирует силовые линии окружающего его пространства, чем Земля.
При взаимодействии Солнца и Земли их гравитационно-пространственные поля накладываются друг на друга. В силу того, что гравитационно-пространственный потенциал Солнца выше, чем у Земли, вектор напряженности их общего поля направлен к центру звезды, но не на всей протяженности разделяющего их пространства (рис. 4).
Рис. 4 Взаимодействие гравитационно-пространственных полей Земли и Солнца;
L – точка Лагранжа, F1S – движущая сила, F3 – поперечная сила.
Точка, где силы деформации силовых линий пространства двух взаимодействующих материальных тел уравновешиваются, носит название точки Лагранжа, в частности для тандема Земля – Солнце она находится на расстоянии 1 миллиона километров от Земли.
Силы, действующие в гравитационно-пространственных полях всех материальных тел универсальны, потому что первоисточником их действия являются взаимодействия положительно заряженных гравитонов с отрицательно заряженными проетонами. Их действия суммируются в одну результирующую силу и в зависимости от направления их действия они усиливают или ослабляют друг друга.
Так в примере гравитационно-пространственного взаимодействия Солнца и Земли они проявляются по-разному.
На этой странице вы можете прочитать онлайн книгу «Физика пространства», автора Анатолия Трутнева. Данная книга имеет возрастное ограничение 12+, относится к жанру «Прочая образовательная литература».. Книга «Физика пространства» была издана в 2016 году. Приятного чтения!
О проекте
О подписке