Как показывает практика внедрения влагомеров крайне недостаточно только знаний о продаваемом влагомере. Необходимо развить знание об объекте измерения. Поэтому рассмотрим как пример распределение влаги в древесных материалах.
Различают две формы влаги, содержащейся в древесине: связанную (гигроскопическую) и свободную.
На рис. 3.1. Изображено схематическое строение древесины с наличием в ней свободной и связанной влаги.
Рис. 3.1. Схематическое строение древесины с наличием в ней свободной и связанной влаги.
Связанная влага находится в толще клеточных оболочек, свободная влага содержится в полостях клеток и межклеточных пространствах. Связанная влага удерживается в основном физико-химическими связями; ее удаление сопряжено со значительными затратами энергии. Ее предельное значение примерно равно 30 %. Свободная влага удерживается только физико-механическими связями, удаляется значительно легче.
Различают следующие степени влажности древесины:
мокрая > 100 %; свежесрубленная (50–100 %); воздушносухая (15–20 %); комнатносухая (8–12 %); абсолютно сухая (около 0 %).
В растущем дереве влажность распределена неравномерно по радиусу и по высоте ствола. У хвойных пород влажность заболони в 3–4 раза выше влажности ядра и спелой древесины. По высоте ствола хвойных пород влажность заболони увеличивается в направлении от комля к вершине, а влажность ядра практически остается без изменения. В стволах ядровых лиственных пород (дуб, ясень, вяз) влажность ядра вверх по стволу слегка понижается. У заболони влажность почти не изменяется, а у лиственных безъядровых пород (осина, липа) влажность увеличивается от комля к вершине. В нижней части ствола спелая древесина в летний период имеет большую влажность, а в верхней меньшую, причем разница эта достигает 60 %.
Кроме сезонных изменений влажность древесины в стволах растущих деревьев подвержена и суточным колебаниям. Так в заболони ели утром влажность составляла 186 %, в полдень-132 % и вечером 150 %.
В раннем возрасте древесина ядровых пород состоит только из заболони и лишь в течением времени образуется ядро.
Ядрообразование является неотъемлемой частью жизнедеятельности дерева и зависит от условий произрастания. Например, объем ядра в 30 летней осине составляет 20–30 % от общего объема дерева. Ядро постепенно увеличивается за счет перехода части заболони в ядро. С возрастом часть площади сечения ствола, занимаемая заболонью уменьшается.
Проведенные исследования по атмосферной сушке пиломатериалов и кругляка позволяют проанализировать изменения по влажности. Так в июле из материала убывает примерно по 5 % влаги в сутки, а зимой по 1–2 % в месяц. На каждом складе, внутри каждого штабеля и даже вокруг отдельной влажной доски возникает свой климат.
При сплаве влажность увеличивается, но только заболони. Древесина некоторых пород в поперечном направлении вообще почти непроницаема для жидкостей. С образованием ядра сосуды в нем закупориваются особыми выростами-тиллами, поэтому проницаемость ядровой древесины, как правило, значительно меньше, чем заболонной.
При распиловке такой древесины при загрузке в сушильную камеру мы будем иметь доски, с различными объемами и значениями влажности. Это показано на рис. 3.2.
Такая же картина наблюдается и в березе. Это видно при обработке чурака на лущильном станке, представленном на рис. 3.3.
Рис. 3.2. Образование зон влажности при распиловке сырых бревен.
Рис. 3.3. Образование разброса влажности в березовом чураке. 1- сосна, 2- береза без ложного ядра, 3-береза с ложным ядром, 4-лиственница.
Специальные исследования по матричным методам влагометрии показали следующую картину.
Для этого были распилены образцы влажной древесины на кубики размером 20×20×20 мм и представлены в виде кубической матрицы размером 3×3×3. Для эксперимента выбирались образцы из досок: ядровых, заболонных и смешанных ядрово-заболонных.
Ниже показано наиболее характерное распределение влажности по слоям в образцах.
Рис. 3.4. Распределение влажности в образце заболонной доски по слоям
Рис. 3.5. Распределение влажности в образце ядровой доски по слоям
Рис. 3.6. Распределение влажности в образце ядрово-заболонной доски по слоям.
Необходимо отметить, что представленные исследования показывает примерную картину распределения влажности в пиломатериалах хвойных пород. Для представления картины распределения влажности в древесной стружке покажем на рис. 3.7.
Рис. 3.7. Временная диаграмма колебаний влажност сырых древесных частиц в систематических выборках.
Колебания влажнсти в древесной стружке имеют большой разброс. В одной маленькой выборке могут быть частицы с влажностью 30 % и 100 %.
На внутреннем рынке России появилось огромное количество материалов различных пород из-за рубежа. Поэтому исследования с ними можно производить по представленной методике.
Плотность древесины влияет на построение Град хар-к. Мы пример, представляем сведения о формировании разброса плотности в древесине.
Плотность древесины изменяется в зависимости от района произрастания и колеблется в широких пределах. Данные представлены в табл. 4.1.
Табл 4.1. Данные по разбросу плотности в древесине.
Плотности древесных пород могут перекрываются своими пределами. Например, береза может иметь такую же плотность что и дуб и.п. При контроле электрическим Влаг влажности, например, дуба с разной плотностью мы будем иметь различные показания, хотя действительная влажность может быть одинакова в пределах одной поставки. При построении хар-к необходимо вводить коррекцию по районам применения Влаг для уменьшения Погр от плотности.
О том как идет развитие процесса сушки можно наглядно показать на рис. 5.1. Мы видим, что с верхних слоев влажность убывает значительно быстрее, чем из глубины.
Кривая процесса сушки имеет экспоненциальный характер и в конце сушки существует очень энергоемкий период вытеснения оставшейся влаги. Уменьшение влаги в древесине, например, с 80 % до 75 % требует значительно меньших энергозатрат, чем с 13 % до 8 %. Кроме того при сушке в нижнем диапазоне значительно возрастают опасные деформации в древесине из-за усадочных явлений.
Усушка начинается примерно с 30 % и имеет примерно линейную зависимость. Под полной усушкой понимают уменьшение линейных размеров илил объема древесины при удалении всего количества связанной влаги (т. е. от предела гигроскопичности до нуля). Наиболее полная линейная усушка, равная 6–10 % в тангециальном направлении, в радиальном 3–5 %; а вдоль волокон 0,1–0,3 %. Полная объемная усушка в среднем составляет 12–15 %.
Рис. 5.1. Развитие влажностных разбросов в процессе сушки по толщине пиломатериала
Следовательно влагомеры со светодиодной градацией через 2 % могут использоваться только для механической обработки древесины только по 3 классу.
Для соблюдения условий точности изготовления продукции, чистоты, точности механической обработки и шероховатости поверхности с точностью измерения влажности нужно учитывать, что изменение влажности деталей не превышает при обработке по 1 классу точности ±0,5 %, по 2-му классу ±1,0 % и по 3 классу ±2–2,5 %.
Влажность влияет на механическую прочность древесины. На рис. 5.2. представлены зависимости прочности древесины, связанные с влажностью.
Рис. 5.2. Зависимости прочности древесины, связанные с влажностью.
Также сказывается влияние влажности склеиваемой древесины на прочность клеевого шва.
На рис. 5.3. Показана зависимость прочности клеевого скрепления от влажности древесины.
Рис. 5.3. Зависимость прочности клеевого скрепления от влажности древесины.
Ниболее высокая прочность имеется у древесины с влажностью 8±2 %.
ЭКОНОМИЧЕСКИЕ АСПЕКТЫ влагометрии рассмотрим на анализе зависимости продолжительности сушки и ее стоимости. Эта зависимость условная, так как в настоящее время цены имеют значительные колебания. Параметры сушки также имеют отклонения, что усложняет расчеты
График дает наглядное представление значимости завершающего этапа процесса сушки, наиболее дорогого и ответственного.
На рис. 5.4. представлена диаграмма в четырех квадратах. В первом квадранте представлена зависимость влажности и продолжительности сушки. Кривая выражается в виде экспоненты. В начале процесса сушки при удалении свободной влаги с высоким влагосодержанием кривая имеет резко выраженную крутизну. По мере вытеснения влаги процесс замедляется. На конечной стадии он переходит в плавную почти прямую имеющую небольшой наклон. В 4 квадранте дается приближенная связь времени и стоимости затрат на сушку.
Рис. 5.4. Зависимость продолжительности сушки и стоимости
Хотя и принято считать, что время – это деньги, однако же нельзя представлять, что эта зависимость будет иметь линейный характер. Скорее всего она будет иметь также нелинейный параболический характер. Это можно объяснить тем, что в начальном периоде сушки затраты будут значительно ниже, так как влага интенсивно выходит при переходе к конечной стадии необходимо повышать температуры и качество сушильного агента. Это естественно потребует еще больше энергетических затрат. Таким образом опираясь на эти две кривые мы можем построить кривую зависимости влажности и стоимости затрат.
Анализируя полученную кривую, мы видим, что основные затраты падают на конечную стадию процесса сушки. Поэтому измерение влажности в конечной стадии является важнейшим моментом для реального определения стоимости затрат и позволяет повысить точность оценки сушки.
Из книг Б. Н. Уголева по развитию напряжений в древесине при сушке. При разрешении различных конфликтов при определении показателей качества древесины необходимо учитывать деформативность древесины и причины, связанные с влагообразованием. Процесс сушки древесины протекает при неравномерном распределении влажности по всему объему материала. Наличие неравномерного поля влажности, возникающего с самого начала процесса, приводит к созданию неоднородного деформированного состояния из-за неравномерной усушки и является первопричиной образования внутренних напряжений. Внутренние напряжения рассматриваются как совокупность – влажностных и остаточных напряжений.
Влажностные напряжения вызваны неоднородной усушкой материала, обусловленной в свою очередь неравномерным распределением в нем гигроскопической влаги. Эти напряжения, обусловленные упругими деформациями, относятся к категории временных; они исчезают при выравнивании влажности по объему (сечению) сортимента.
О проекте
О подписке