За последнее время достигнуты большие успехи в респираторной медицине. Появилось много методов и режимов искусственной и вспомогательной вентиляции легких, сложных и эффективных технических средств и технологий, используемых при оказании специализированной анестезиологической и реаниматологической помощи. Это позволило проводить более эффективную респираторную поддержку и спасти жизнь многим тяжелым больным и пострадавшим.
Эффективность анестезиологической и реаниматологической помощи раненым и больным, требующим респираторной поддержки, во многом зависит от уровня профессиональной подготовки медицинских сестер анестезиологических и реаниматологических бригад. Однако их подготовка, особенно по респираторной медицине, в нашей стране пока во многом не отвечает современным требованиям. Кратковременность обучения по специализации и при общем усовершенствовании, отсутствие специального цикла обучения респираторной терапии, в том числе и по респираторной поддержке, при наличии острого дефицита учебно-методической литературы не позволяют медсестрам приобрести необходимые знания, навыки и умения в одном из самых нужных для пациентов и трудном для освоения разделе анестезиологии и реаниматологии.
К сожалению, вышедшие до сих пор учебные издания для медсестер ОАРИТ не содержат многих необходимых для практики данных по ряду вопросов искусственной и вспомогательной вентиляции легких, в них не представлены современные данные по использованию респираторной поддержки во время анестезии, реанимации и интенсивной терапии. Все эти вопросы рассмотрены в настоящем пособии.
Дыхание – процесс поглощения кислорода (О2) из атмосферы, транспортировки его к митохондриям клеток, где вследствие аэробного метаболизма образуется вода, углекислый газ (СО2) и основное количество энергии, необходимой для жизнедеятельности организма, с последующим выведением СО2 в атмосферу. Лишь небольшое количество энергии может образоваться без участия кислорода (анаэробный метаболизм).
Кислород и углекислый газ перемещаются из области высокого давления в зону низкого давления, так как в организме поддерживается каскад парциального давления газов.
В атмосферном воздухе в обычных условиях давление – около 760ммрт.ст.(1атмосфера=760ммрт.ст.=101кРа).Воздух содержит 21 % О2(кислорода), 78 % N2(азота) и небольшое количество СО2 (углекислого газа), Ar (аргона) и He (гелия). Давление, создаваемое этими газами, равно общему (атмосферному) давлению (760 мм рт. ст.). Парциальное давление О2 в сухом воздухе (РIО2) на уровне моря при атмосферном давлении 760ммрт.ст.равно160ммрт.ст. – (760⋅21/100=160).Воздух, продвигаясь по верхним дыхательным путям, нагревается и согревается, вальвеолярномвоздухеРАО2будетсоставлятьоколо 100 мм рт. ст. Его определение осуществляют по следующей формуле: РАО2 == [(760 мм рт. ст. минус давление паров воды в альвеолах) ⋅(21 % минус процент поглощаемого в легких О2)] = [(760 – 47) ⋅ (21 – 7)/100] = 100 мм рт. ст.
Парциальное давление (напряжение) кислорода в артериальной крови (РаО2) – около 80 – 90 мм рт. ст., в венах (РVO2)=40мм рт.ст., авмитохондрияхклетокснижаетсядо3ммрт.ст.Послеоксигенации в легких кровь поступает по легочным венам в левые отделы сердца и далее в ткани организма.
Постепенно снижается и напряжение СО2 от митохондрий до атмосферы. Кровь из тканей возвращается в правые отделы сердца, она имеет РVCO2 = 45 мм рт. ст. Кровь идет к легким по легочным артериям к легочным капиллярам, где происходит отдача СО2 через альвеолы в атмосферу (РАСО2 = 34 – 44 мм рт. ст., а РIСО2 – практически равно 0).
Таким образом, сущность дыхания – это обеспечение доставки к клеткам организма кислорода и выведение их них СО2. При этом вследствие окисления органических веществ освобождается энергия, необходимая для всех видов жизнедеятельности.
Система дыхания – одна из важнейших функциональных систем организма, поддерживающая оптимальные величины парциального давления O2 и СО2, а также рН в крови и тканях.
Эффективный газообмен в организме возможен при интеграции и координации функций различных подсистем (этапов) системы дыхания (рис. 1.1).
Рис. 1.1. Схема газообмена в организме
Система дыхания включает в себя следующие подсистемы (схема):
1) внешнее дыхание, обеспечивающее газообмен в легких, а также через кожу и слизистые оболочки дыхательной функцией легких, кожи и слизистых оболочек;
2) транспорт газов кровью, осуществляемый дыхательной функцией сердечно-сосудистой системы и крови;
3) внутреннее, тканевое дыхание (ферментативный процесс биологического окисления в клетках), обеспечивающее газообмен в тканях.
Все эти подсистемы работают во взаимосвязи благодаря нейрогуморальной регуляции (дыхательный центр находится в ретикулярной формации головного мозга).
Газообмен в легких («легочное дыхание») обеспечивается: 1) легкими с дыхательными путями и капиллярным кровотоком, 2) грудной клеткой с дыхательными мышцами и 3) аппаратом управления. С помощью легочного дыхания осуществляется обмен О2 иСО2 между атмосферным воздухом и артериальной кровью. Газообменная функция легких – одна из важнейших.
Газообмен в легких обеспечивается тремя механизмами: вентиляцией альвеол, диффузией газов через альвеолокапиллярную мембрану и кровотоком в легочных капиллярах.
Вентиляция легких происходит благодаря работе дыхательных мышц (диафрагмы, межреберных и др.) и изменению объема легких с продвижением по воздухоносным путям дыхательного газа: на вдохе от атмосферы до альвеол и обратно на выдохе. Воздухоносные пути (ВП) подразделяют на верхние (полость носа, носовая и ротовая часть глотки) и нижние (гортань, трахея, бронхи, включая внутрилегочные разветвления бронхов). В носу, во рту и в глотке вдыхаемый воздух увлажняется и согревается. Во время вдоха воздух поступает в легкие сначала по механизму объемного потока (в первых 16 разветвлениях, до конечных бронхиол), а затем путем диффузии газов в переходной и дыхательной зонах (17 – 23 генерации ВП) – в дыхательные бронхиолы, альвеолярные ходы, альвеолярные мешочки до альвеол, объединенных под названием ацинусов или респиронов (рис. 1.2).
Рис. 1.2. Схема воздухоносных путей человека по Е. R. Weibel (1963)
Эпителий, выстилающий внутреннюю поверхность альвеолы, состоит из плоских выстилающих клеток (I тип), занимающих до 95 % площади альвеолярной поверхности, и секреторных (II тип) продуцирующих и секретирующих сурфактант, состоящих из протеинов и фосфолипидов. Он распределяется по альвеолярной поверхности и снижает поверхностное натяжение. Это предотвращает спадение альвеол и образование ателектазов. В зоне альвеол базальные мембраны эпителия и эндотелия создают сверхтонкий барьер для обмена газов, а также воды и растворенных в ней веществ между плазмой и интерстициальным пространством.
Из общей емкости легких (5 л) бо́льшая часть (около 3 л) приходится на дыхательную зону, которая включает в себя около 300 млн альвеол, площадь которых 50 – 100 м2, а толщина – 0,5 мкм.
(!) Эффективность вентиляции зависит от объема альвеолярной вентиляции и характера ее распределения в легких (равномерности).
При каждом вдохе в легкие поступает у здорового взрослого человека около 500 мл воздуха (колебания дыхательного объема, VT = 360 – 670 мл). Через дыхательную зону проходит примерно на 150 мл воздуха меньше, потому что объем так называемого «мертвого пространства» (VD), где газообмен почти не осуществляется, составляет 2,2 мл/кг массы больного. Поэтому газообмен в легких будет определяться не минутным объемом дыхания ( = 5,6 – 8,1 л/мин в норме), а минутным объемом альвеолярной вентиляции, которая рассчитывается по формуле:
Объемальвеолярнойвентиляцииопределитьтрудно, поэтому в клинической практике чаще всего ограничиваются определением минутного объема дыхания с помощью волюмоспирометра и учитывают при этом частоту дыхания. При частом и поверхностном дыхании, когда резко возрастает объем физиологического мертвого пространства, при нормальном или даже увеличенном минутном объеме дыхания может быть снижен объем альвеоляр•ной вентиляции. Так,•например, при VT=300 мл и f = 20 мин– 1, составит 6 л/мин, а = 3 л/мин. Поэтому объем вентиляции лучше оценивать на основании определения содержания СО2 вконечной порции выдыхаемого воздуха.
Наиболее информативным показателем, характеризующим объем альвеолярной вентиляции, является концентрация (парциальное давление) углекислого газа в конечно-выдыхаемом воздухе – FETCO2 (PETCO2).
При отсутствии нарушения вентиляции (снижения или увеличения объема альвеолярной вентиляции) PETCO2 почти равно парциальному давлению углекислого газа в альвеолярном воздухе (PАCO2), которое лишь на 1 мм рт. ст. меньше, чем парциальное давление CO2 в артериальной крови (PаCO2). Однако при нарушении вентиляции между ними может быть существенная разница.
При нормальной альвеолярной вентиляции в условиях спонтанного дыхания организм поддерживает постоянство состава альвеолярного воздуха, поддерживая парциальное давление O2 в альвеолярном воздухе (РАО2) на уровне 90 – 110 мм рт. ст., а РЕТСО2 – 34 – 44 мм рт. ст. При изменении объема вентиляции РЕТСО2 изменяется быстрее, чем РаСО2. При быстром увеличении объема вентиляции (например, во время искусственной вентиляции лeгких) РАСО2 уменьшается гораздо быстрее, чем в крови. В норме артерио-альвеолярная разность парциального давления СО2 – (а–А)рСО2 составляет около 1 мм рт. ст. При гипервентиляции она увеличивается, а при быстро нарастающей гиповентиляции может иметь отрицательное значение.
FETCO2 (PETCO2) можно легко и быстро определить по капнограмме (рис. 1.3) с помощью капнографа. В норме FETCO2 = = 4,9 – 6,4 об.% (PETCO2 = 34 – 44 мм рт. ст.). Гипервентиляция уменьшает величину этого показателя, вызывает гипокапнию (FETCO2 < 4,9 об.%, PETCO2 < 34 мм рт. ст.), что может привести к развитию дыхательного алкалоза. Гиповентиляция, наоборот, вызывает гиперкапнию (FETCO2 > 6,4 об.%, PETCO2 > 44 мм рт. ст.) с развитием дыхательного ацидоза.
В поддержании эффективной вентиляции имеет большое значение ее равномерность. Вентиляция всех участков здоровых легких неодинакова. Основания легких, имея меньший исходный альвеолярный объем и большую растяжимость, при вдохе расширяются сильнее, чем верхушки. Поэтому нижние отделы легких вентилируются лучше верхних. Однако в норме неравномерность вентиляции легких незначительная. При патологии (бронхоспазм, нарушение региональной проходимости дыхательных путей) неравномерность вентиляции резко возрастает и при дыхании воздухом даже в условиях избыточной минутной вентиляции легких могут возникнуть нарушения оксигенации в легких, развиться гипоксемия.
Рис. 1.3. Капнограммы в норме и при различных патологических состояниях
Наиболее информативным показателем, характеризующим степень неравномерности вентиляции, является угол наклона альвеолярного плато капнограммы (СО2).
В норме ∠ СО2 составляет 3 – 7°, при астматическом статусе он может возрастать до 60° и более, так как резко нарушается равномерность вентиляции.
Таким образом, капнография позволяет быстро оценивать эффективность вентиляции, ее объем и равномерность, она является одним из методов стандарта минимального мониторинга во время анестезии и интенсивной терапии.
Кровоток в легких (Qc) в значительной степени отличается от кровотока в большом круге кровообращения:
• среднее давление в легочной артерии (15 мм рт. ст.) в 6 раз ниже, чем в артериях большого круга (100 мм рт. ст.);
• систолическое давление в легочном стволе составляет около 25 мм рт. ст.; оно имеет ярко выраженный пульсирующий характер;
• разность давления между началом и концом системного кровообращения (100 мм рт. ст. в аорте минус 2 в правом предсердии равно 98) в 10 раз выше, чем в легочном кровообращении (15 мм рт. ст. в легочной артерии минус 5 мм рт. ст. в левом предсердии равно 10);
• так как кровоток в обоих кругах практически одинаков, сопротивление в легочных сосудах в 10 раз меньше, чем в системных: [(15 мм рт. ст. – 5ммрт.ст.) / 6 л/мин легочного кровотока = 1,7 мм рт. ст. /л ⋅мин– 1];
• сопротивление легочных сосудов снижается при повышении внутрисосудистого давления в результате вовлечения (открытие новых сосудов) и расширения (увеличения просвета) сосудов, при расслаблении гладких мышц сосудов под воздействием ацетилхолина, изопротеренола;
• сопротивление легочных сосудов возрастает при низком объеме легких (внутриальвеолярные сосуды сужены) и больших объемах (капилляры растянуты и их просвет уменьшен), при сокращении гладких мышц сосудов под воздействием гистамина, серотонина, норадреналина, снижении парциального давления O2 в артериальной крови – РаО2 (особенно ниже 70 мм рт. ст.), низком рН крови, возбуждении симпатических нервов;
•высокое сопротивление в большом круге, обусловленное в значительной степени артериолами с их мощными гладкомышечными слоями, регулирует местный кровоток в различных органах.
Задача правого сердца – обеспечить подъем крови до верхушек легких и эффективный легочный газообмен, а левого – регулировать доставку крови к различным органам, перераспределять ее.
У человека в вертикальном положении легочный кровоток почти линейно убывает в направлении снизу вверх. При умеренной физической нагрузке кровоток увеличивается и регионарные различиясглаживаются.Неравномерноераспределениелегочного кровотока объясняют различием гидростатического давления в кровеносных сосудах (между верхушкой и основанием легких она равна 23 мм рт. ст.).
Градиент гидростатического давления в кровеносных сосудах (30 см Н2О, или 23 мм рт. ст.), действующий на капилляры, обусловливает неравномерное распределение легочного кровотока. Кровоток в верхушках легких снижен и PA >Pa>Pv (зона 1 – альвеолярный кровоток хорошо вентилируемых альвеол), вентиляция преобладает над кровотоком, VA
О проекте
О подписке