Читать книгу «Медицинские информационные системы: многомерный анализ медицинских и экологических данных» онлайн полностью📖 — А.М. Лушнова — MyBook.
image

1.4. Характеристика геомагнитного поля

Геомагнитные возмущения и бури могут быть вызваны сильными всплесками солнечного ветра. Когда всплеск солнечного ветра (чаще всего связанный с солнечными вспышками и извержениями корональных масс) достигает Земли, наблюдаются изменения магнитосферы, а геомагнитное поле Земли сильно флуктуирует. Длительные периоды геомагнитной активности известны как геомагнитные бури (сильные возмущения магнитного поля Земли).

Во время таких мощных геомагнитных бурь токи в магнитосфере быстро изменяются в ответ на изменения солнечного ветра. Эти токи генерируют свои собственные магнитные поля, которые складываются с магнитным полем Земли и приводят к возникновению геомагнитно индуцированных всплесков токов в почве, газопроводах, силовых и телефонных линиях. Возможны различные биологические эффекты, в частности, очень важные для людей на Земле и космонавтов, находящихся на орбите (Karl T., Thurber Ir. Солнечный ветер и магнитосфера Земли. http://www.bezumnoe.ru/journal/MEMFIS/comments4518.html).

Кроме магнитных бурь в околоземном пространстве могут возникать короткопериодические колебания ГМП, представляющие собой колебания от десятых долей секунды до нескольких минут. Они имеют периодический или нестационарный характер с вариациями амплитуд до нескольких порядков, от сотых долей нанотесла (гамма) до десятков нанотеслов (Шеповальников В. Н., Сороко С. И., 1992; Абдурахманов А. Б. с соавт., 1994). Такие колебания ГМП индуцируют в верхних слоях атмосферы электрические токи. Основная причина их – волновые процессы ионосферы, движения частиц, электрических полей, взаимодействие межпланетных магнитных полей. В магнитосфере эти явления сопровождаются низкочастотными электромагнитными колебаниями со звуковыми, «свистящими» эффектами (Оль А. И., 1971; 1973; Махотин Л. Г., 1984). Таким образом, на биосферу действуют в основном короткопериодические, сверхнизкочастотные ЭМП, ионосферные инфразвуковые колебания, радиоактивность, положительные радиоионы, ультрафиолетовые излучения – с длиной волны около 290 нм (Владимирский Б. М., 1980; 1982; Кобрин М. М., 1982).

В реальной природе имеет место комбинированное воздействие природных факторов, которые не строго периодичны (Richner H., Greber W., 1978). Поэтому, вероятно, на организм оказывают влияние именно эти первичные, фундаментальные физические факторы. ГМП имеет очень значительные функции и является естественным преобразователем и модулятором энергии космических излучений, которые обладают большой биотропностью (Дружинин И. П. с соавт., 1974; Колодуб Ф. А., 1984).

Вариации магнитного и электрического полей Земли тесно связаны с токами ионосферы. На них влияют солнечно-лунные, лунно-суточные и годовые ритмы. Особенно вариабельна величина горизонтальной составляющей ГМП. Преобразователями энергии космических лучей являются земное магнитное поле и ионосфера и слои высокой проводимости – волновод с основной частотной полосой в 7–8 Гц между поверхностью Земли и ионосферой (Арошидзе Г. М., 1971; Арошидзе Г. М. с соавт., 1971; 1977; Глушковский Б. И. с соавт., 1979).

Вариации магнитного и ЭМ полей Земли могут достигать существенных значений. Их переменные составляющие связаны с токами ионосферы. Здесь есть солнечно-лунные, лунно-суточные и годовые колебания. Существуют также короткопериодические колебания с периодами от десятых долей секунд до десятков минут. К-индексы тоже отражают геомагнитные возмущения. Особенно вариабельна величина горизонтальной составляющей (до десятков гамм: 1 гамм = 10–5 эрстед). Различают также 2 вида микропульсаций геомагнитного поля: устойчивые и иррегулярные (Владимирский Б. М., 1980; 1982; Кобрин М. М., 1982).

Наиболее вариабельна во время магнитных бурь горизонтальная составляющая ГМП, которая за короткий промежуток времени может изменяться на несколько десятков нанотеслов. Локальные возмущения зависят от географической широты и имеют уменьшающиеся значения по направлению от полюсов к экватору. ГМП модулирует граничный диапазон между микроволнами (менее 300 Мгц) и оптической частью световых волн (Антипов В. В. с соавт., 1980). Таким образом, в реальной жизни имеет место комбинированное воздействие природных факторов, которые не строго периодичны (Richner H., Greber W., 1978).

Описание состояния магнитного поля Земли в виде месячных обзоров является одной из оперативных форм представления данных геомагнитных обсерваторий. На основе месячных обзоров по сети обсерваторий составляются сводные таблицы К-индексов и данные о магнитных бурях, которые затем публикуются ИЗМИ РАН в сборнике «Космические данные. Месячный обзор» (1977–1988). В каждом выпуске приводятся сведения о суточных вариациях горизонтальной, вертикальной составляющих и склонении геомагнитного поля и К-индексах. В данной работе использованы табличные значения в гаммах горизонтальной и вертикальной составляющих и склонение (в десятых долях минуты). При статистических расчетах использовались среднесуточные табличные приращения параметров ГМП, в отличие от К-индексов, где изучались усредненные 3-часовые значения.

Под возмущенностью понимается отклонение среднечасового значения, выраженного в гаммах, от спокойного суточного хода. К-индекс представляет собой меру активности, возмущенности магнитного поля по горизонтальной составляющей Н. К-индекс отражает геомагнитную активность. К-индексы отражают локальную геомагнитную возмущенность, рассчитываются за 3 часа и тесно связаны с хромосферными вспышками (Дубров А. П., 1974). Одна из основных ее характеристик – синфазность, то есть свойство одновременного всемирного изменения, но могут быть и чисто локального характера. Сильные геомагнитные возмущения, продолжающиеся непрерывно более 6 часов, называют магнитными бурями. Выделяют 4 словесные градации магнитных бурь: очень большую, большую, умеренную, малую (Сизов Ю. П., 1977).

Для определения степени интенсивности магнитных бурь в таблице 1.2 приведены их амплитудные границы для г. Санкт-Петербурга и его окрестностей. Аналогичные показатели существуют и для обсерваторий мира, расположенных в других географических широтах: для северных широт – большие показатели амплитуд МП, для южных – меньшие. Амплитудные значения во время бури определяются последовательно для всех элементов D – склонения (ГМП_С), H – горизонтальной (ГМП_Г) и Z – вертикальной (ГМП_В) составляющих как разность между наибольшим и наименьшим значениями этих элементов и выражаются в гаммах. Солнечно-суточные вариации не учитываются. Максимумы и минимумы амплитуд по этим трем элементам достигаются в разное время. По локальным амплитудным значениям данной местности на основании таблицы 1.2 определяется характеристика бури по всем трем составляющим: горизонтальной, вертикальной и склонению. Средние показатели оцифрованных характеристик по трем составляющим ГМП являются совокупным описанием бури (Сизов Ю. П., 1977).

Таблица 1.2

Амплитудные границы магнитных бурь для г. Санкт-Петербурга 


МП Земли обладает переменной частью, которая зависит от очень широкого спектра явлений, происходящих в околоземном и космическом пространстве. Переменное МП Земли разлагается на такие составляющие: S + L + DP + DR + DCF + DT, где S – регулярная часть от волнового излучения вариаций Солнца, ее источник – токи в Е-слое ионосферы, L – регулярная часть от лунноприливных явлений верхних слоев атмосферы Земли, DP – нерегулярная вариативная часть от солнечного ветра, генерирующего большие электрические токи в слое Е полярных зон ионосферы, DR – поле магнитосферного кольцевого тока, DCF – нерегулярная часть токов поверхности магнитосферы от взаимодействия с солнечным ветром, DT – нерегулярная часть токовых полей в хвосте магнитосферы.

Но эти составляющие не учитывают пульсаций и прочих предельно малых процессов. Поэтому магнитная буря и параметры ГМП D, H, Z отражают совокупные гелио-гео-космические и магнито-ионосферные взаимодействия. На принципе оценки разностей между возмущенным и спокойным ГМП в данной географической местности базируется метод определения геомагнитной активности, впервые описанный Бартельсом в 1939 году и названный 3-часовой 10-балльной системой К-индексов. Нижняя минимальная амплитуда соответствует К = 1 и является эквивалентом 3 гаммов напряженности МП (Сизов Ю. П., 1977).

Базой шкал К-индексов для планеты Земля определен масштаб обсерватории Нимегк (Германия) таким образом, что этот параметр должен быть сравним для любой географической широты. Максимум определен по соответствию предельно большой магнитной вариации и приравнивается к величине К-индекса, равной 9 баллам. Поэтому для г. Санкт-Петербурга соответствие амплитуд отклонений в целых числах гамм количеству баллов (К-индексов) выглядит согласно данным таблицы 1.3.


Таблица 1.3

Нижняя граница К-индексов и соответствующих амплитуд отклонений ГМП в гаммах для Санкт-Петербурга 


В данной работе также использованы следующие индексы:

1) Ежемесячно означают Ap – Планетарную эквивалентную ежедневную амплитуду;

2) Ежемесячно означают ap, или Планетарную эквивалентную амплитуду для 00–03 периода времени;

3) Ежемесячно означают Cp, или Планетарная ежедневная характеристика числа – качественная оценка полного уровня магнитной деятельности в течение дня, определенного от суммы восьми ap амплитуд. Значения Ср разбиты на диапазоны, каждый из которых соответствует определенной величине С9 (0,0–0,1; 0,2–0,3; 0,4–0,5; 0,6–0,7; 0,8–0,9; 1,0–1,1; 1,2–1,4; 1,5–1,8; 1,9; 2,0–2,5)

4) Ежемесячно означают C9 – преобразование от 0 до 2,5 диапазона Cp индекса к одной цифре между 0 и 9.

Приписка p означает планетарный и определяет глобальный индекс магнитной деятельности. В настоящее время вклад в планетарные индексы вносят следующие 13 обсерваторий, которые лежат между 46 и 63 градусами северной широты и южной геомагнитной широты: Лервик (Великобритания), Эскдейлмьюир (Великобритания), Хартленд (Великобритания), Оттава (Канада), Фредериксбург (США), Meannook (Канада), Ситка (США), Эйруэлл (Новая Зеландия), Канберра (Австралия), Лово (Швеция), Брорфелд (Дания), Вингст (Германия), а также Нимекг (Германия).

Индекс колеблется от 0 до 400 и представляет собой значение коэффициента, преобразованного в линейный масштаб в гаммы (нанотеслы) – масштаб, который измеряет эквивалентную амплитуду нарушения станции, на которой K = 9, нижний предел 400 гамм.

На рис. 1.4 изображена динамика геомагнитных индексов АР_А и АР_03. Кривые идут практически параллельно, совпадают значения минимумов и максимумов. Максимальное значение индекса АР_А и индекса АР_03 наблюдается в начале 2004 года и составляет 35 нТл.


Рис. 1.4. Многолетняя среднемесячная изменчивость геомагнитных индексов АР_А и АР_03


Рис. 1.5. Многолетняя среднемесячная изменчивость геомагнитных индексов СР и С9


Временная изменчивость геомагнитных индексов СР и С9 представлена на рис. 1.5. Видно, что ход линий похож, максимумы и минимумы двух индексов наблюдаются в одни и те же периоды. Максимум приходится на начало 2003 года.

Далее, на рисунках 1.6–1.9, представлены временные спектры геомагнитных индексов, используемых в данной работе.

Рис. 1.6. Временной спектр геомагнитного индекса АР03


Рис. 1.7. Временной спектр динамики геомагнитного индекса АР_А


Рис. 1.8. Временной спектр динамики геомагнитного индекса С9


Рис. 1.9. Временной спектр динамики геомагнитного индекса СР


Периодичность повторения в 13 лет наблюдается у всех четырех индексов, но не имеет совпадений ни с одним видом летальностей пациентов стационаров Санкт-Петербурга, сведения о которых будут приведены в главе 10. Так же во всех спектрах геомагнитных индексов присутствует период в 6 месяцев, который совпадает с летальностью пациентов от инфекций, заболеваний легких и операционной и послеоперационной летальностью при операциях на грудной клетке (см. главу 10). Такие периодичности, как 22 и 19,5 месяца, наблюдаемые у спектров геомагнитных индексов АР03 и АР_А, имеют совпадения только со спектральной плотностью летальности в отделениях торакальной хирургии. Периодичность 8,7 месяца имеется у двух геомагнитных индексов из четырех, это индексы С9 и СР, и эта периодичность также совпадает только со смертностью больных в отделениях торакальной хирургии.

1
...
...
13