Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».
Разумеется, не все стрелы летят по одной и той же параболе даже в отсутствие сопротивления воздуха, а планеты не сидят все на одной-единственной эллиптической орбите. Кроме собственно закона движения, важно и то, как я запустил стрелу (куда направил и с какой скоростью) и где именно находился и с какой скоростью двигался Марс, скажем, в 00:00:00 GMT 1 января 2000 г. Эти данные удачно называются начальными условиями. Они включают положения и скорости всего, что движется, в некоторый момент времени, который условно считается начальным. Решая уравнения движения для конкретных систем, мы каждый раз задаемся какими-то начальными условиями. Для разгоняющегося самолета это положение в начале полосы и нулевая скорость. Используя уравнения движения с учетом тяги, сопротивления воздуха в зависимости от скорости и подъемной силы в зависимости от скорости, мы можем определить, где и когда самолет оторвется от полосы.
Для сложных систем, как правило, ответ невозможно выразить в виде функции времени, записанной на бумаге обозримым образом. В таких случаях говорят, что «уравнения движения нельзя решить точно», но в этой фразе нет никакого глубокого философского смысла; это довольно технический момент, к тому же стимулирующий развитие как приближенных математических методов, так и компьютерных вычислений. Но для одинокой планеты, обращающейся вокруг звезды, по прекрасному математическому везению уравнения движения можно решить точно, и именно это Ньютон и проделал, с выдающимися последствиями.
Уравнения движения для одной планеты можно решить точно
Больше чем Кеплер. Ко временам Ньютона законы Кеплера можно было воспринимать как экспериментальный факт, т. е. результат наблюдений. Привнесенные в эту историю Ньютоном математика и дополнительная догадка о том, как действует гравитация, воспроизвели эллипсы для планет. Три закона Кеплера перестали быть разрозненными высказываниями и приобрели логическую связь между собой: все три оказались следствиями закона движения и закона тяготения. Слово «следствие» здесь означает математическую неизбежность: если верны второй закон Ньютона и закон тяготения Ньютона, то никак по-другому планеты двигаться не могут[18]. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19]. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).
Рис. 1.5. Орбиты: эллипс, гипербола и парабола
Эллипсы. Во-первых (Кеплер был абсолютно прав!), эллипсы: математически точные эллипсы. Движение в разных частях эллипса происходит быстрее или медленнее точно так, как это утверждал Кеплер, вот только после Ньютона это утверждение перестало быть отдельным законом природы, а стало следствием закона движения и закона тяготения. Точно так же и третий закон Кеплера потерял самостоятельность.
Для Кеплера имеющиеся орбиты планет были уникальными. Для Ньютона, получившего контроль над тем, как эти эллипсы вырастают из законов и начальных условий, очевидно, что эллипсы могут быть очень разными: сильнее или слабее вытянутыми («совсем не вытянутый» эллипс – это попросту окружность). Математически тот или иной эллипс, по которому движется планета, определяется начальными условиями: тем, в каком направлении и с какой скоростью планета двигалась в выбранный «начальный» момент. Чтобы предсказать поведение реальных планет, надо взять эти начальные условия из наблюдений (определить скорость может оказаться сложнее, чем определить положение; но нужно и то и другое). Решение уравнений движения с такими начальными условиями дает в точности те траектории, которым реальные планеты и следуют, и мы уверенно предсказываем, что с ними будет в будущем[20]. Для воображаемой планеты начальные условия можно выбрать любыми, и эллипсы получатся самые разные: например, сильно вытянутые. Настоящие планеты в Солнечной системе таких вытянутых эллипсов не демонстрируют, но и здесь оказалось, что если математика показывает наличие решения определенного вида, то стоит поискать его в физическом мире. Кометы – это тела, которые движутся по сильно вытянутым орбитам (не каким-то, а именно эллипсам, пока они не портятся за счет прохождения вблизи массивных планет). При движении по вытянутому эллипсу тело проводит бо́льшую часть времени далеко от Солнца, где его не разглядеть, и лишь за короткое время и с высокой скоростью пролетает вблизи Солнца. Именно тогда комета становится видна с Земли (которая, не будем забывать, и сама достаточно близка к Солнцу – примерно в 10 раз ближе, чем Сатурн, самая дальняя из известных во времена Ньютона планет, и в 30 раз ближе, чем Нептун)[21].
«Начала» Ньютона вышли в 1687 г., а в 1705-м его уравнения были использованы для предсказания, причем с размахом на полвека вперед: в 1758 г. будет наблюдаться комета. Эта комета сейчас называется 1P/Halley. В этом обозначении 1P указывает на ее порядковый номер (один!!) и ее «периодичность», а Halley – это в русской традиции Галлей, хотя точнее было бы Хэли или Холи. (Пример другой кометы: 67P/Churyumov – Gerasimenko; здесь пусть англоговорящие мучаются с тем, как произнести.) Галлей – современник Ньютона, сыгравший немалую роль в том, чтобы «Начала» вообще увидели свет, – не открыл свою комету, он «всего лишь» заявил, что кометы, наблюдавшиеся ранее, в частности в 1531, 1607 (при Кеплере!) и 1682 гг., – это одна и та же комета. Заявление не было произвольной догадкой, но подтверждалось результатами вычислений того, как большие планеты влияют на орбиты комет (как именно они портят те самые вытянутые эллипсы). На основе вычислений, пользуясь законами Ньютона, Галлей и предсказал следующее появление кометы в 1758 г. Сбывшееся предсказание означало бы, что в Солнечной системе есть по крайней мере одно тело, не являющееся планетой, которое обращается вокруг Солнца.
Галлей скончался за 16 лет до установленного им срока возвращения кометы и был лишен возможности переживать «в реальном времени», сбудется или не сбудется его предсказание, – а переживать было от чего. Указанный им 1758 год прошел без кометы, точнее, почти прошел: комета объявилась практически в последний момент, 25 декабря. Увидел ее 35-летний саксонский фермер и астроном-любитель Палич. Его жизненная стезя определялась унаследованными им обязанностями по ведению фермерского хозяйства, и в юности ему приходилось скрывать свою любовь к астрономии[22]. Вообще-то я не думаю, что Галлей хоть сколько-нибудь сомневался, что его комета вернется и будет возвращаться. После трех полных оборотов вслед за своим появлением в 1758–1759 гг. комета вернулась в 1986-м, но я упустил свою возможность ее увидеть. Она приблизилась к Солнцу, но оказалась по другую сторону от него, чем Земля, что создало худшие условия для ее наблюдения с Земли за последние 2000 лет. Надеюсь, многие из моих читателей используют свой шанс в 2061-м. Целый класс комет – с периодом обращения от 20 до 200 лет – называют кометами галлеевского типа; типичная такая комета появляется во внутренней области Солнечной системы один-два раза за одну человеческую жизнь.
1 января 1801 г. на небе обнаружилось неизвестное до того тело. Автор открытия (астроном Пьяцци, католический священник из Палермо) продолжал наблюдения до начала февраля, когда ему пришлось прервать их из-за болезни. К сентябрю, когда он опубликовал результаты своих наблюдений, новое небесное тело заняло на небе положение, близкое к Солнцу, из-за чего наблюдать его стало невозможно. Возможность наблюдений должна была вернуться в конце года, но для их возобновления требовалось с достаточной точностью знать, где новое тело к тому времени окажется. В его розыске принял участие 24-летний Гаусс (по мнению многих – величайший математик из всех когда-либо живших). Он разработал «быстрый алгоритм» восстановления орбиты по трем наблюдениям и с его помощью определил эллипс, на котором это тело должно было находиться. На основе его предсказаний потерянная планетка, названная Церерой, была успешно «возвращена» 31 декабря 1801 г.; едва ли какая-нибудь другая подобная история наблюдений укладывается точно в календарный год[23]. Большая полуось эллипса, на котором пребывает Церера, – примерно 2,8 а.е. (астрономическая единица – среднее расстояние от Земли до Солнца, удобная мера длины в Солнечной системе); это между Марсом и Юпитером.
К решениям уравнений движения для планеты, притягиваемой Солнцем, следует относиться как к описанию всех возможных видов движения в такой системе. Несколько удивительно, что их так мало: кроме вышеупомянутых эллипсов, осталось только два.
Гиперболы. Если запускать тела из какой-нибудь суперпушки, находящейся на некотором расстоянии от Солнца, то при достаточно большой начальной скорости тело не попадет на замкнутую орбиту, а, «завернув» вокруг Солнца, улетит прочь. Решение уравнений движения говорит, что такое движение непременно происходит по математически точным кривым, которые называются гиперболами. Они родственны эллипсам, но, в отличие от замкнутого эллипса, гиперболы разомкнуты. Два конца гиперболы по мере удаления от ее «середины» делаются все больше похожими на прямые (что неплохо согласуется с нашим представлением о том, что, когда тело находится очень далеко от Солнца, солнечное притяжение почти не ощущается и тело летит почти по прямой). У гиперболы тоже есть фокус (специальная точка вне самой гиперболы); гиперболические траектории небесных тел таковы, что (как и в случае эллипса) Солнце сидит точно в фокусе. Движение по гиперболе, как говорят, «не финитно»: тело приходит откуда-то издалека, отклоняется Солнцем и, изменив направление, уходит куда-то в неопределенное далеко, причем скорость его, хотя и уменьшается по мере удаления, приближается к некоторому фиксированному значению, не равному нулю.
Предсказание гиперболических орбит (возможность которых Кеплер, очевидно, не мог и подозревать) – это демонстрация силы математических методов и самого подхода к познанию, основанного на причинах явлений. В течение трех сотен лет можно было не наблюдать в Солнечной системе ни одного тела, летящего по гиперболе, и тем не менее ни у кого не было сомнений, что такое возможно – что в Солнечную систему может залететь гость извне, побыть здесь недолго и распрощаться навсегда, с необходимостью следуя по какой-то гиперболе. Такой гость издалека был замечен 19 октября 2017 г. и вскоре наречен Оумуамуа (рис. 1.6). Сейчас этот астероид, когда-то, видимо, выброшенный из какой-то иной планетной системы, уже вычерчивает «уходящую» от нас часть гиперболы. 30 августа 2019 г. была открыта и межзвездная комета 2I/Borisov. Кроме того, пять рукотворных объектов сейчас движутся «вокруг» Солнца по гиперболам, это значит, что они покидают Солнечную систему. Это «Пионер-10» (запущен в 1972-м), «Пионер-11» (1973), «Вояджер-1», «Вояджер-2» (1977) и «Новые горизонты» (2006).
Рис. 1.6. Оумуамуа в видении художника
Параболы. Наконец, «между» эллипсом и гиперболой есть траектория еще одного типа. Она называется парабола. У нее тоже есть специальная точка, называемая фокусом, и несколько условно можно считать, что парабола – это «разомкнутый эллипс» (один из фокусов эллипса отодвинут неопределенно далеко, но по мере отодвигания эллипсу не давали стать слишком тонким). На первый же взгляд парабола больше похожа на гиперболу: у нее тоже уходят вдаль два конца, правда, «выпрямляются» они по мере удаления по другому закону, чем в случае гиперболы, да и улетающее тело движется по ним иначе: скорость движения делается все меньше и меньше, постепенно приближаясь к нулю.
Едва ли хоть одно тело вблизи какой-нибудь звезды летит по параболе, но причина не в нарушении соответствия между тем, что предсказывает математика, и тем, что может иметь место в реальности. Причина в сложности «тонких настроек». Если вы имеете в своем распоряжении космическую пушку, чтобы запускать тела в сторону Солнца, то, пока вы будете выстреливать тела с большой скоростью, Солнце не сможет оставить их в своей сфере влияния и траектории этих тел станут гиперболами. Если же вы понизите скорость выстреливания, то притяжения Солнца хватит на то, чтобы удержать тело при себе, а это значит, что траектория окажется эллипсом. При заданном расстоянии от Солнца лишь единственное значение скорости приведет к тому, что тело полетит по параболе. Стоит выстрелить чуть или сколь угодно быстрее – получатся гиперболы, а чуть или сильно медленнее – эллипсы. В этом смысле гипербол и эллипсов «много», а парабол «мало». В реальности параболы в качестве орбит не запрещены, а просто не случаются.
Вот, собственно, и все, что может произойти: эллипсы, гиперболы или в крайнем случае параболы. Никаких более замысловатых траекторий, если речь идет о движении под действием притяжения к одному центру. Никаких, например, вариантов «по спирали падает на Солнце» – что не может не радовать обитателей одной из планет, обращающихся вокруг Солнца.
Кеплер абсолютно правильно прочитал многостраничные таблицы с числами, но нечеловеческие усилия и озарение, необходимые для такого прочтения, оказались больше никому не нужны: знание о том, какими могут быть орбиты, стало доступным и первокурснику. «Особенно замечательным, – писал Эйнштейн в статье, посвященной 200-летию кончины Ньютона, – должно было казаться выяснение того факта, что причина движения небесных тел тождественна столь привычной нам из повседневной жизни силе тяжести»[24]. И это не все. Принципы, один раз успешно выведенные из наблюдений (исторически – в ограниченной части Солнечной системы), наделили нас способностью делать выводы об устройстве мира и предсказывать поведение его частей далеко за пределами Солнечной системы. Мир Ньютона, полностью поглотивший мир Кеплера (и впитавший в себя относительность Галилея), постепенно распространялся на все шире приоткрывавшуюся Вселенную, не требуя для этого никаких изменений в своих фундаментальных положениях. Солнечная система отлично поддерживала единство теории и наблюдений: например, солнечные и лунные затмения известны на любой «мыслимый» момент времени в будущем или прошлом, и эти предсказания выполняются много точнее, чем расписание пригородных поездов. Простые принципы, заложенные в описание мира, работали, работали и работали; новые принципы не требовались. А если все, что происходит, случается в соответствии с законами движения, то все ли предсказуемо? Если знать положения и скорости всех тел в некоторый момент времени (упоминавшиеся уже начальные условия), то можно ли узнать будущее, просто решая уравнения движения? И вообще, в космосе все правда так просто? И есть ли границы, за которыми сформулированные законы теряют применимость?
Источник развития знания – несоответствия в имеющемся знании. Мощь ньютоновской картины мира, основанной на законах движения, определялась в том числе тем, что границы ее стали появляться в поле зрения не раньше чем через полтора столетия чрезвычайно плодотворного ее развития. Мы доберемся до этих границ гораздо быстрее, но еще до того нас ждут несколько шедевров ее использования, как в рукотворных ситуациях, когда требуется управлять движением ради достижения практических целей, так и для понимания устройства мира самого по себе.
Движение как организация. Планеты, которые «бродят» по небу, а в действительности движутся по эллипсам, остаются в Солнечной системе, а не улетают прочь. Слово «система» подчеркивает привычку мыслить о нашем космическом окружении как о чем-то едином и заодно достаточно устойчивом. Причина такого положения дел в том, что существует вид движения под действием притяжения (да, эллипсы), участники которого не разбегаются в разные стороны. Открывая планеты у других звезд, мы тоже говорим о планетных системах и тоже, разумеется, рассуждаем в терминах эллипсов, по которым там летают планеты. На тех расстояниях, с которых мы их наблюдаем, ничего, кроме планет (и иногда значительных скоплений пыли), обнаружить не удается, но про свою Солнечную систему мы хорошо знаем, что в ней содержится множество разного, кроме планет; и все разнообразные ее обитатели летают вокруг Солнца тоже по эллипсам – в большей или меньшей мере искажаемым влиянием других обитателей. Я легко соглашусь с тем, что самое интересное из происходящего состоит как раз в этих взаимных влияниях, вызванных ими изменениях орбит и прочих драматических событиях, но тем не менее буду настаивать на том, что Солнечная система организована в нечто единое благодаря замкнутым траекториям. Ту же идею организации движущихся частей в нечто единое мы усматриваем в структурах большего масштаба: Солнечная система вместе с другими звездами, а также газом и пылью обращается вокруг центра галактики Млечный Путь, и все вместе они тоже составляют «систему»; другие галактики в дальнем космосе – основные структурные элементы, в терминах которых мы говорим об этом космосе. Движение в сочетании с законом притяжения – элемент организации и одновременно инструмент для проверки нашего понимания происходящего во Вселенной; ближе к дому это еще и возможность применить достигнутое понимание на практике. Движение как предмет для применения имеющихся знаний и способ получения новых – объект нашего внимания на следующих прогулках.
О проекте
О подписке