Вопрос о том, из чего сделаны вещи, иногда происходит из необходимости, например, если предмет требуется починить или как-то улучшить, но чаще – из любопытства. На первый взгляд все довольно просто: джинсы «сделаны из» ткани и ниток с добавлением, если угодно, заклепок, пуговиц и молний. Ткань, в свою очередь, сделана из нитей, причем ключевую роль здесь играет способ, каким эти нити организованы. Уже в XVII в. голландские ремесленники и купцы контролировали качество ткани, используя увеличительные стекла, постепенно превратившиеся в микроскоп. Выросший в этой среде ван Левенгук решил использовать микроскоп не для дела, а для удовлетворения любопытства, заинтересовавшись еще более мелкими деталями внутреннего строения вещей. В течение 1670–1680 гг. эти действия привели к череде открытий, среди которых инфузории, чешуйки кожи и сперматозоиды, а микроскоп вслед за тем надолго стал важнейшим средством, позволяющим углубиться в структуру вещей. Одно из моих детских воспоминаний – микроскоп у нас дома и загадочные разноцветные картинки каменных срезов – шлифов, которые изучала моя мама и на которые время от времени мне удавалось взглянуть. Каждая такая картинка сама по себе ничем не напоминала камень, но несла в себе информацию о его структуре и даже происхождении. Погружение в глубину вещей «объясняло» эти вещи – в данном случае горные породы – как определенную комбинацию нескольких более примитивных блоков, а именно минералов. Вопрос следующего уровня – из чего состоят сами минералы – был уже предметом не петрографии («науки о камнях»), а химии («науки о составе всего»). Путешествие еще на несколько уровней «вниз» и является предметом этой книги – в первую очередь в отношении того, какие правила там действуют и как эти правила определяют условия сборки элементов, которые в конце концов складываются во все, что нас окружает.
Еще в первой половине XIX в. о структуре материи стало постепенно известно примерно следующее. У каждого вещества (чистого, т. е. не являющегося смесью) имеется наименьшая часть – атом или молекула. Молекулы же построены как комбинации нескольких атомов – элементов, меньше которых уже ничего нет. В химических реакциях одни молекулы разрушаются, а другие образуются, и происходит это именно за счет перераспределения атомов между ними.
Сейчас мы узнаём это в школе, часто не вполне осознавая, что уже здесь намечается разрыв с привычной реальностью. Дело в том, что этих атомов и молекул не видно ни в один микроскоп в обычном понимании этого слова. И возникли они в науке XIX в. не как элементы физической реальности, а как «средство бухгалтерского учета» в химических реакциях – как вычислительный прием, позволяющий определить, какое количество одного вещества полностью прореагирует с заданным количеством другого вещества. В этом самом месте мы впервые встречаемся с мотивом, который, с некоторыми вариациями, прозвучит для нас еще не раз. Этим атомам, которые использовались для подсчета баланса в химических реакциях, не назначалось никаких других свойств, кроме способности вступать в комбинации друг с другом, составляя тем самым различные молекулы. Это и правда было средством учета, почти как разбиение доходов и расходов по статьям. В таком теоретическом качестве идея атомов отлично работала, но совершенно правомочно звучал вопрос: а существуют ли они? Не слишком ли самоуверенно думать, что раз мы нашли удобную вычислительную схему для определения правильных количеств веществ в химических реакциях и успешно оперируем ею на бумаге, то в природе, видите ли, на полном серьезе обнаружатся элементы этой схемы?
Скепсис (который, надо сказать, является одним из составляющих науки) набрал немалую силу в отношении атомов на рубеже XIX и XX вв., и реальность этих конструктов многим (включая и Менделеева – первооткрывателя Периодического закона) представлялась тогда далеко не очевидной. Дополнительный аргумент скептиков состоял в том, что атомы, как считалось, принципиально ненаблюдаемы. Спрашивается, следует ли полагаться на «реальное» существование объектов, реальность которых едва ли можно проверить?
Увидеть атом и правда нельзя, причем не из-за свойств нашего зрения, а в силу определения того, что значит «увидеть». Дело в том, что различить с помощью света можно только те подробности, которые по размеру больше (а лучше – заметно больше), чем длина световой волны. А у видимого света, даже если он фиолетовый, т. е. наиболее коротковолновый, длина волны такая, что на ней укладывается пара тысяч атомов. Попробуйте-ка разглядеть одну букву в слове, если самое мелкое, что можно увидеть, – слово из тысячи букв! (Красивые изображения атомов, которыми нередко иллюстрируются научные достижения, – например, атомы, уложенные регулярными рядами, – это результаты компьютерной обработки данных, которые получены довольно хитрыми, непрямыми способами и сами по себе фотографиями не являются; обычно это восстановленная по некоторым косвенным измерениям усредненная электронная плотность.) В общем, я предлагаю начинать привыкать к тому, что атом никак не выглядит.
Принято воздавать должное атомистической концепции, уходящей корнями в Античность. Да, порой интересно искать в прошлом предшественников дорогих нам существенно более поздних идей, но, действуя так, мы часто переносим на те ранние догадки и предположения хотя бы часть того, что нам сейчас известно про обсуждаемую концепцию. И заодно мы склонны забывать, что эти первоначальные идеи конкурировали тогда с другими, часто противоположными воззрениями, а сигналов из будущего насчет предпочтения одних перед другими не поступало. Предсказал ли атомы в V в. до н. э. Демокрит, высказавший идею о существовании пустоты и неделимых атомов, исходя при этом из вполне философского беспокойства по поводу бесконечной делимости материи? Произвольно сделанное предположение, пусть даже ставшее фундаментом философской системы, можно с легкостью «опровергнуть», высказав другое равно произвольное предположение и выстроив на его основе другую философскую систему. В точности так и поступил с атомами Аристотель (ок. 330 г. до н. э.), высказав противоположную идею непрерывности и заодно разделавшись с пустотой (которой, по его известному мнению, природа не терпит).
Серьезная же дискуссия о реальности атомов, с опорой на опыт в комбинации с существенно более развитыми теоретическими методами, пришла к своему завершению после 1908 г. Скепсис начала 20-го века оказался преодолен благодаря экспериментам, в которых был остроумно задействован «посредник» – мелкая частичка, брошенная в жидкость. От нее требовалось быть настолько мелкой, чтобы случайным образом дергаться в жидкости под действием «пинков», которые сообщают ей непрестанно движущиеся молекулы, но при этом достаточно крупной, чтобы (в отличие от самих молекул и атомов) ее можно было разглядеть в микроскоп. Оказалось, что характер видимого движения такой частички действительно определяется «пинками» со стороны предполагаемых невидимых агентов и, более того, отражает некоторые свойства этих агентов, например их массу и характерный размер, – в полном согласии с тем, что получалось, если считать эти агенты молекулами. Что же более основательно доказывает физическое, а не номенклатурное существование каких-либо объектов, как не удары, получаемые с их стороны? Атомы прочно и уже безвозвратно прописались в наших взглядах на мир.
Но победа передового атомизма во всемирном масштабе не обошлась, как это случается в подобных ситуациях, без перегибов. Вольно или невольно мысль склонялась к тому, что раз атомы пихаются как маленькие мячики, то, наверное, они и представляют собой что-то похожее на мячики, только очень маленькие. Но «мячики, только очень маленькие» оставляют больше вопросов, чем дают ответов. Например, как представлять себе их поверхность: из чего она сделана? Если снова затянуть ту же песню – сделана, мол, из еще более мелких штучек, – то и правда пора обращаться к Демокриту за моральной поддержкой против дурного деления материи на всё более мелкие части. Однако инерция мышления сильна и в несчетном числе рассказов об устройстве атомного мира продолжали существовать маленькие шарики.
Желание видеть внутреннее устройство вещей как миниатюризацию чего-то привычного было все еще заметно в модели атома, которая появилась в 1913 г. В ней атом уподоблялся планетной системе с электронами вместо планет и ядром вместо звезды, но на орбиты накладывались жесткие условия, из-за которых оказывались возможными лишь отдельные, «избранные» орбиты. Эта модель была прогрессивной для того момента, она принесла Нобелевскую премию ее автору, Бору, но и пользу в качестве важного шага к разрыву с классической картиной мира, но это неправильная модель. Тем не менее аналогия с «понятным» устройством вещей сделала ее, по существу, мемом, хотя после появления настоящей квантовой механики сам автор модели, Бор, сталкиваясь с апелляциями к ней, вопрошал: «Они что, никогда не слышали про квантовую механику?» При случае стоит спросить себя, каким же образом несколько орбит превращают крохотный объем пространства во что-то, похожее не на диск, а на шар? И как, собственно, организовать атом, одинаковый по всем направлениям, исходящим из его центра, в простейшем случае, когда там имеется всего один электрон? (Солнечную систему с одним только Меркурием сложно назвать шарообразной.)
С электронами мы слегка забежали вперед, и сейчас это исправим. К моменту победы атомизма действительно никто уже не воспринимал атомы как нечто неделимое: стало понятно, что в них содержатся носители отрицательного электрического заряда, которые при определенных условиях могут оттуда уходить. Это электроны, намеки на существование которых появлялись уже с середины XIX в., но которые были «официально» открыты в 1897 г. именно как агенты, проявляющие себя вне атома, но происходящие из атомов. И вот электроны-то, кстати сказать, – неделимые (по самым современным представлениям). В годы, предшествовавшие их открытию, когда о чем-то подобном высказывались еще только догадки и предположения, говорили об «атомах электричества»{3}. Кто знает, если бы последовательность событий в истории науки оказалась несколько иной, электроны тоже сначала могли бы восприниматься не в физическом, а в «бухгалтерском» смысле – как средство учета электрических зарядов. Но, как бы то ни было, вполне физическое существование электрона зафиксировал Дж. Дж. Томсон, подведя итог нескольким десятилетиям исследования явлений, которые исторически были известны как «катодные лучи» и «бета-лучи» (а в действительности являются не чем иным, как потоками электронов, испускаемыми в различных физических ситуациях).
Электроны, как и атомы, никак не выглядят, а все, что нам удается видеть, – это следы, оставленные ими в нашем макроскопическом мире: таковы и трек в пузырьковой камере, и светящийся пиксель на экране телевизора XX в. Весь свет, который отражается от письменного стола, за которым я сейчас сижу, исходит из атомов, а точнее, испускается электронами в этих атомах – но не может ничего сообщить о том, как атом или электрон выглядят. Когда самая малая порция света попадает в атом, она взаимодействует там с электроном, отдавая ему свою энергию. И наоборот, электрон, получивший лишнюю энергию, может ее отдать, излучив свет. Но этот свет несет информацию не о том, как что-то выглядит, а о правилах жизни электронов внутри атомов. Сейчас эти правила следуют из квантовой теории – предмета всех последующих глав; угаданы же они были во многом благодаря изучению света, происходящего из атомов.
Во избежание недопонимания стоит сразу оговориться, что атомы, лишенные чего бы то ни было похожего на «твердую поверхность», имеют тем не менее характерный размер. Как бы ни был атом устроен, влияние всего того, что в нем находится, не простирается бесконечно. Эпитет «характерный» в применении к размеру атома надо понимать как «типичный и приблизительный». Если оценивать этот размер различными (по необходимости непрямыми) способами, то получающиеся значения могут различаться, но не слишком сильно; слово «характерный» не предполагает абсолютно точного совпадения. Характерный размер атома – десятая доля нанометра, или 1 ангстрем, или 10–8 см (это можно разными способами уточнять для атомов различных видов, но отличия не очень значительны). Это и правда не слишком много: «нано» довольно прочно ассоциируется с малым, а это еще меньше.
То, что происходит внутри атома, и, собственно, само его существование оказалось невозможно описать в рамках законов природы, известных к началу XX в., несмотря на все успехи, достигнутые на их основе. Сформулированные новые законы природы составили квантовую механику – которая уже почти сто лет удивляет своей эффективностью и одновременно заметной необычностью своего устройства.
О проекте
О подписке