Случайная величина ξ называется [абсолютно] непрерывной (continuous random variable), если существует неотрицательная функция pξ(x), такая, что
где Fξ (x) – функция распределения вероятностей случайной величины ξ.
Функция pξ(x), удовлетворяющая условию (1.50), называется плотностью распределения вероятностей (probability density function – PDF) случайной величины ξ.
Равенство (1.50) означает, что заштрихованная площадь на рис. 1.18 под графиком плотности распределения равна вероятности того, что случайная величина принимает значение меньше х.
1. Вероятность того, что непрерывная случайная величина принимает значение между х1 и x2 (x1 < x2), совпадает с заштрихованной площадью на рис. 1.19.
2. Если pξ(x) – плотность распределения вероятностей случайной величины, то
3. Вероятность того, что непрерывная случайная величина ξ принимает то или иное значение, всегда равна нулю, т. е. P{ξ = x} = 0.
4. Производная функции распределения вероятностей непрерывной случайной величины равна плотности распределения вероятностей этой случайной величины, т. е.
Математическое ожидание и дисперсия непрерывной случайной величины ξ могут быть найдены следующим образом:
где Pξ(x) – плотность распределения вероятностей случайной величины ξ. Стандартное отклонение случайной величины определяется обычно как:
Если f(t) – некоторая непрерывная функция, а ξ – непрерывная случайная величина, то
Пример 1.50. Случайная величина ξ равномерно распределена на отрезке [a, b], если
Функцию распределения случайной величины ξ можно найти следующим образом:
Таким образом,
Математическое ожидание и дисперсию случайной величины ξ можно найти следующим образом:
Пример 1.51. Случайная величина ξ распределена показательно, если
Асимметрией (skewness) распределения вероятностей случайной величины ξ называется число
Если a(ξ) = 0, то плотность распределения вероятностей случайной величины ξ симметрична относительно математического ожидания этой случайной величины (рис. 1.20).
При положительной (правосторонней) асимметрии распределения правая ветвь (tail) плотности распределения вероятностей случайной величины «длиннее» левой ветви. Соответственно, при отрицательной (левосторонней) асимметрии правая ветвь плотности распределения вероятностей случайной величины будет «короче» левой ветви (рис. 1.21 и 1.22).
Эксцессом (kurtosis) распределения вероятностей случайной величины ξ называется число
При одном и том же стандартном отклонении чем больше эксцесс, тем «тяжелее» ветви плотности распределения вероятностей случайной величины (рис. 1.23).
Распределение вероятностей с большим эксцессом называют распределением с «тяжелыми» ветвями (leptokurtic/fat-tailed distribution).
Медианой (median) распределения случайной величины ξ называется число Ме, удовлетворяющее условию:
Модой (mode) распределения случайной величины ξ называется любая точка локального максимума плотности распределения Pξ(x) этой случайной величины.
Распределение с одной модой Мо называется унимодальным (unimodal).
Если даны две случайные величины ξ1 и ξ2, то можно рассмотреть двумерную случайную величину
Функция Pξ(x1, x2), удовлетворяющая равенству (1.54), называется плотностью совместного распределения случайных величин ξ1 и ξ2.
Все основные свойства числовых характеристик, рассмотренные нами для дискретных случайных величин, сохраняются и в непрерывном случае.
Дискретная случайная величина ξ имеет биномиальное распределение (binomial distribution) B(n, р), если она принимает значения: 0, 1, 2, …, n, причем
Пример 1.52. Рассмотрим портфель из 20 облигаций, выпущенных различными эмитентами с одним и тем же кредитным рейтингом. Предположим, что дефолты по облигациям независимы, а вероятность дефолта по любой облигации в течение одного года равна 10 %.
Обозначим через ξ число дефолтов по данному портфелю в течение одного года. Случайная величина ξ имеет биномиальное распределение B(20, 0,1), следовательно, ожидаемое число дефолтов по портфелю облигаций в течение одного года составит:
Вероятность того, что в течение года произойдет два дефолта, находится следующим образом:
Вероятность, что в течение года произойдет 5 дефолтов, составит величину:
Случайная величина ξ, принимающая значения 0, 1, 2, …, k, …, имеет распределение Пуассона (Poisson's distribution) с параметром λ > 0, если
Пример 1.53. Число дефолтов по портфелю облигаций в течение одного года имеет распределение Пуассона. Ожидаемое число дефолтов равно 8.
Вероятность того, что в течение года произойдет ровно два дефолта, можно найти по следующей формуле:
Говорят, что случайная величина ξ распределена нормально (normal distribution), если ее плотность распределения вероятностей имеет вид:
График плотности нормального распределения приведен на рис. 1.24.
1. Если случайная величина ξ распределена нормально с плотностью
2. Плотность нормально распределенной случайной величины симметрична относительно математического ожидания этой случайной величины, т. е. асимметрия a(ξ) = 0.
В частности,
Эксцесс нормального распределения всегда равен 3.
3. Вероятность того, что нормально распределенная случайная величина будет отличаться от своего ожидаемого значения на величину, не превышающую одного, двух или трех ее стандартных отклонений, равна 68,3, 95,5 и 99,75 % соответственно.
Пример 1.54. Инвестор считает, что реализуемая доходность его портфеля облигаций за 6 месяцев имеет нормальное распределение с математическим ожиданием 7 % и стандартным отклонением 4 %.
Вероятность того, что реализуемая доходность окажется:
4. Если случайная величина ξ распределена нормально с параметрами (a, S), то случайная величина
распределена нормально с параметрами (0, 1), т. е. имеет стандартное нормальное распределение.
Пример 1.55. Менеджер считает, что стоимость управляемого им портфеля облигаций распределена нормально с математическим ожиданием 10 млн долл. и стандартным отклонением 2 млн долл. Его интересует, какова вероятность, что стоимость портфеля окажется между 6 млн и 11 млн долл.
В данном случае
Пример 1.56. Предположим, что в условиях примера 1.55 менеджер хочет найти доверительный интервал для стоимости управляемого им портфеля с надежностью 95 %. Иными словами, требуется найти интервал
Тогда Ф(z) = 0,025. С помощью табл. 1.1 найдем значение z = 1,96. Значит, y = z · S = 1,96 · 2 млн долл. = 3,92 млн долл.
Искомый доверительный интервал: (6,08 млн долл.; 13,92 млн долл.).
Говорят, что положительная случайная величина ξ распределена логнормально (lognormal distribution), если ln ξ имеет нормальное распределение вероятностей. Таким образом, плотность логнормального распределения имеет вид:
График плотности логнормального распределения приведен на рис. 1.25.
1. Логнормальное распределение обладает правосторонней асимметрией (positively skewed), а при малых значениях S = σ(lnξ) близко к нормальному распределению.
2. Если случайная величина ξ имеет логнормальное распределение с параметрами а и S, то
Пример 1.57. Будем считать, что доходность 10-летних облигаций с нулевыми купонами имеет логнормальное распределение с параметрами a = -2,70; S = 0,30.
3. Если две случайные величины распределены логнормально, то их произведение также имеет логнормальное распределение.
Говорят, что случайная величина z имеет распределение х2 (chi-squared distribution) с n степенями свободы, если она представима в виде суммы n квадратов взаимно независимых величин со стандартными нормальными распределениями.
Пример 1.58. Даны 10 дневных наблюдений доходности 30-летних казначейских облигаций с нулевым купоном:
Если допустить, что доходность распределена нормально, то оценки математического ожидания и дисперсии доходности можно найти следующим образом:
Доверительный интервал для дисперсии доходности с надежностью 96 % можно найти из условия
О проекте
О подписке