Дано основное вероятное пространство
где Ω – пространство элементарных событий;
β – σ-алгебра случайных событий;
Р – вероятностная мера.
Рассмотрим некоторое числовое множество V, элементы которого в дальнейшем будем считать моментами времени.
Функция ξ(w, t) двух переменных w ∈ Ω и t ∈ V называется случайным процессом (stochastic process), определенным на множестве V, если для любых t ∈ V и x ∈ R (R – множество всех действительных чисел) множество
т. е. является случайным событием.
Из условия (1.70) следует, что если на множестве V определен случайный процесс ξ(w, t), то каждому моменту времени t ∈ V поставлена в соответствие случайная величина ξt(w) = ξ(w, t). Случайная величина ξt(w) называется сечением случайного процесса в момент времени t.
Таким образом, чтобы на множестве V задать некоторый случайный процесс, достаточно каждому моменту времени t ∈ V поставить в соответствие ту или иную случайную величину ξt(w) – сечение этого случайного процесса. В силу этого случайный процесс можно обозначить как ξt(w) или просто ξt.
Если на множестве V задан случайный процесс ξ(w, t), то при каждом фиксированном элементарном событии w ∈ Ω мы имеем функцию одного переменного t. Эту функцию, определенную на множестве V, называют траекторией, или реализацией, случайного процесса ξ(w, t).
Пример 1.68. Рассмотрим случайный процесс
Сечением данного случайного процесса в момент времени t = 2 является случайная величина 2η(w) + 1. Траектории случайного процесса ξ(w, t) изображены на рис. 1.27.
Пример 1.69. Случайный процесс на [0, +∞) определен следующим образом:
Сечением случайного процесса ξ(w, t) в момент времени t является случайная величина, принимающая значение 1 с вероятностью, равной P{η(w) > t}, и значение 2 с вероятностью, равной P{η(w) ≤ t}.
Траектория случайного процесса ξ(w, t) имеет вид, изображенный на рис. 1.28. Важнейшими характеристиками случайных процессов являются математическое ожидание и дисперсия.
Пример 1.70. Найдем математическое ожидание и дисперсию случайного процесса из примера 1.68.
Пример 1.71. Рассмотрим случайный процесс из примера 1.69, считая, что случайная величина η(w) распределена показательно с плотностью
Случайные процессы с независимыми приращениями играют важную роль при моделировании эволюции финансовых показателей. Это объясняется тем, что финансовый рынок принято считать эффективным (efficient), если цены активов на этом рынке полностью отражают всю имеющуюся информацию об этих активах. На эффективном финансовом рынке изменения цен активов могут происходить только из-за появления новой информации (которая, вообще говоря, непредсказуема). Это означает, что изменения цены активов на таком рынке должны быть в некотором смысле независимы.
Сечением случайного блуждания в момент времени t0 + kh является дискретная случайная величина, закон распределения вероятностей которой имеет вид:
Траектории случайного блуждания изображены на рис. 1.29 (точками выделена одна из траекторий).
Случайное блуждание α (w, t) обладает независимыми приращениями, причем
Случайный процесс β(w, t), определенный на множестве
называется биномиальной моделью (binominal model), если
Сечением биномиальной модели в момент времени t0 + kh является дискретная случайная величина, закон распределения вероятностей которой имеет вид:
Траектории биноминальной модели изображены на рис. 1.30.
Если случайный процесс β (w, t) является биномиальной моделью с параметрами u, d, p, то
Приращения биномиальной модели, вообще говоря, не являются независимыми. Однако случайный процесс ln β (w, t) имеет независимые приращения.
Случайное блуждание и биноминальная модель относятся к случайным процессам с дискретным временем (discrete time process). Важнейшим примером случайного процесса с непрерывным временем (continuous time process) является винеровский случайный процесс.
Случайный процесс w(w, t), определенный на промежутке [t0, +∞), называется винеровским случайным процессом (Wienerprocess), если выполняются следующие условия:
Для моделирования траекторий винеровского случайного процесса w (w, t) на заданном промежутке времени [t0, Т] можно применить метод Монте-Карло.
Сам винеровский случайный процесс редко используется для моделирования финансовых показателей, так как имеет постоянное математическое ожидание. Однако на основе винеровского процесса строятся почти все случайные процессы, используемые в настоящее время для моделирования различных финансовых показателей.
Стохастическим дифференциальным уравнением (stochastic differential equation) называется уравнение вида
Решением стохастического дифференциального уравнения (1.71) на промежутке [t, Т] называется случайный процесс х (w, τ), удовлетворяющий следующим условиям:
Любое решение стохастического дифференциального уравнения (1.71), удовлетворяющее некоторому начальному условию
В частности, геометрическим броуновским движением (geometric Brownian motion) является случайный процесс, удовлетворяющий стохастическому дифференциальному уравнению:
Геометрическое броуновское движение, определяемое условиями (1.74) и (1.75), можно найти в явном виде:
Во многих случаях можно считать, что эволюция цены финансовых активов описывается геометрическим броуновским движением. Такое моделирование оказывается достаточно точным, например, в случае обыкновенных акций.
Пример 1.72. Инвестор считает, что цена бездивидендной акции описывается геометрическим броуновским движением с коэффициентом смещения 0,1 и годовой волатильностью 40 %. В данный момент времени цена акции равна 100 долл. Инвестора интересует цена этой акции через месяц.
Эволюцию цены Вτ облигации с нулевым купоном можно описывать с помощью геометрического броуновского движения, лишь когда до погашения облигации остается достаточно много времени. Действительно, в момент погашения Т ее цена всегда равна номиналу, т. е. известна достоверно. Это означает, что и зависимость от времени должна иметь вид, изображенный на рис. 1.31.
Таким образом, при моделировании эволюции цены облигации с нулевым купоном необходимо учитывать эффект приближения к номиналу (pull to par), а геометрическое броуновское движение этот эффект не учитывает, так как растет во времени линейно.
В общем случае найти решение стохастического дифференциального уравнения (1.71) в явном виде не удается. Поэтому для моделирования траекторий случайного процесса Ито часто применяется метод Монте-Карло.
Чтобы смоделировать траекторию случайного процесса Ито на отрезке [t, Т], этот отрезок разбивается на n равных частей (n должно быть большим), а затем разыгрывается случайная величина ξ, распределенная нормально с параметрами Тогда для последовательности случайных чисел δ1, δ2…., δn будет построена соответствующая последовательность значений случайной величины ξ, а траектория случайного процесса Ито будет определяться точками:
Указанным выше способом можно построить сколь угодно много траекторий случайного процесса Ито.
Дана последовательность независимых одинаково распределенных случайных величин: η1, η2…., ηn…. с функцией распределения F(x).
Можно рассмотреть новую последовательность случайных величин {Mn}, где Mn = max {η1, η2…., ηn….}, n = 1, 2, 3…..
Функция распределения случайной величины Mn определяется следующим образом:
Дана последовательность независимых одинаково распределенных случайных величин η1, η2…., ηn…..
Если случайные величины η1, η2, …, ηn независимы и одинаково распределены, а n достаточно велико, то функция распределения случайной величины Mn = max{η1, η2, …, ηn} практически совпадает с функцией обобщенного распределения экстремальных значений (при подходящем выборе параметров ξ, μ и σ).
Предположим, что случайная величина Mn = max{η1, η2, …, ηn} имеет распределение Фреше, т. е.
Тогда справедливы следующие утверждения:
1. Плотность распределения случайной величины Mn имеет следующий вид (рис. 1.32).
2. Математическое ожидание и дисперсии случайной величины Mn можно найти по формулам:
Параметры ξ, μ, σ можно подобрать на основе статистических данных.
Для измерений экстремальных событий может быть использовано распределение Парето (Pareto distribution), которое определяется функцией:
Для большого класса случайных величин η при достаточно большом пороговом значении u справедливо равенство:
Соотношение (1.85) позволяет оценивать «хвосты» распределений на основе статистических данных.
О проекте
О подписке