Читать книгу «Александр Иванович Шокин. Портрет на фоне эпохи» онлайн полностью📖 — Александра Шокина — MyBook.
image





















В проекте предложено создать отдельные минные офицерские классы и минную школу для нижних чинов, в состав которых, по мнению автора, должны войти: учебный минный отряд, насчитывающий не менее четырех миноносных судов, минный кабинет, лаборатория и минная мастерская. При утверждении проекта временно управляющий Морским министерством адмирал С.С. Лесовский признал необходимым: «…чтобы Минный офицерский класс и Минная школа были учреждены непременно в Кронштадте, дабы между этими учреждениями и флотом существовала тесная связь, хотя бы для сего и пришлось на первое время несколько усилить расходы на вознаграждение преподавателей».


К.П. Пилкин


Проект был рассмотрен и принят.

«Приказом Его Императорского Высочества Генерал-адмирала в Санкт-Петербурге, Января 30 дня 1875 года № 15 Государь Император в 27 день сего января Высочайше утвердить соизволил в виде опыта на два года, одобренное Адмиралтейством и при сем прилагаемое, Положение об офицерском Минном классе и Минной школе для низших чинов и штат оных с тем, чтобы назначаемое по статье 6 сего положения добавочное жалованье и сохраняемые береговые столовые деньги были выданы обязательным слушателям офицерского класса со дня начала занятий в оном, т. е. с 1 октября 1874 г. О таком Высочайшем повелении объявляю по Морскому ведомству для исполнения и руководства. Подписал: Генерал-адмирал Константин».

Через двадцать с небольшим лет здесь родилось радио.

Первым начальником минного офицерского класса и минной школы для нижних чинов был назначен капитан 2 ранга В.П. Верховской. В первый год ее существования были выпущены 29 минеров. Программа Минного офицерского класса и Минной школы несколько раз подвергалась изменению. В 1877 г. были учреждены подготовительные курсы по математике и механике. Окончание курсов являлось условием для поступления на Минный класс.

Вскоре после открытия класса разразилась Русско-турецкая война 1877— 78 гг. На театр военных действий были командированы наличные минеры, и с их помощью было минировано течение Дуная и его рукавов. Активно использовалось новое оружие: минные катера с шестовыми минами на носу.

Для поражения судна противника требовалось подвести катер на расстояние, равное длине шеста. Удачные атаки минных катеров, выведшие из строя не одно судно неприятеля, показали, что молодые учреждения: Минный Офицерский класс и школа, стоят на высоте своего назначения.

К этому времени уже появились и были закуплены правительством недавно появившиеся самодвижущиеся мины Уайтхеда, и в 1876 г. их изучение было выделено в специальный курс, а в 1878 г. при Минном классе и школе открылись специальные мастерские по изучению торпеды Уайтхеда.

В 1876 г. было выделено в специальный курс изучение только-только появившихся самодвижущихся мин Уайтхеда, а когда они были закуплены правительством, в 1878 г. при Минном классе и школе открылись специальные мастерские по изучению устройства торпед.

С.О. Макаров добился разрешения на применение этого новейшего оружия, и в ночь на 16 декабря 1877 г. у Батума была совершена первая в мире торпедная атака турецких броненосцев – неудачная. Почти через месяц, в ночь на 14 января 1878 г., на Батумском рейде была совершена новая атака на турецкий сторожевой пароход «Интибах», на сей раз удачно, и пароход после попадания торпед был потоплен.

В 1880 г. создан специальный курс для подготовки минеров, не только хорошо знающих минное дело, но и способных заниматься дальнейшим совершенствованием мин. В 1886 г. признали нецелесообразным отвлекать офицеров на 2 года от строевой службы. За счет сокращения программы обучения курс снова стал одногодичным, оставив дисциплины «Мина Уайтхеда» и «Электричество». В 1897 г. ввели отдельный курс по электротехнике, а на приобретение необходимых пособий было выделено 8000 рублей. В 1899 г. в классе начал читать лекции по электромагнетизму тогда еще кандидат физико-математических наук А.С. Попов, а в 1904 г. электромагнетизм выделили в отдельный курс – радиотелеграфию. В 1898 г. расширился курс изучения мины Уайтхеда, а изучение шестовых мин исключили из программы.

Мина Уайтхеда (торпеда) стала первым устройством с автономной системой управления. Для удержания торпеды на глубине Уайтхед изобрел и применил гидростат, однако испытания показали, что торпеда делает скачки и уклоняется от заданного уровня на 6–8 метров. Уайтхед скоро открыл причину этой «резвости». Выражаясь современным языком, это была задержка от появления сигнала ошибки до момента срабатывания исполнительных механизмов. Через два года (в 1868 г.) он эту задачу решил – торпеда начала ходить ровнее, без скачков. Для этого Уайтхед присоединил к гидростату еще один механизм – маятник. Его тяжелый груз через специальную рулевую машинку соединен с рулевыми тягами. Точка подвески выбрана таким образом, что груз маятника как бы помогает гидростату выпрямить ход торпеды. «Секрет мины» – так много лет назывался этот помощник гидростата. Это и есть первый рулевой торпеды, который в подводных глубинах держит правильный курс по глубине на корабль противника.

Первые торпеды имели запас хода едва на 400 метров. На таком малом расстоянии торпеда только отклонялась от заданного направления ненамного, но все же промахи случались довольно часто. В дальнейшем торпеда совершенствовалась, увеличили запас воздуха в резервуаре, дальность хода торпеды выросла, и ее отклонения от направления стали очень большими – промахи часто случались даже по неподвижному противнику. А ведь нужно было стрелять и по движущимся кораблям.


А.С. Попов


Только через 30 лет после рождения торпеды (в 1896 г.) конструкторам удалось изобрести для нее второй механический рулевой – гироскопический прибор, позволяющий с большой точностью управлять движением по направлению. Вплоть до последнего времени идея создания гироскопа торпеды приписывалась технику Обри, работавшему на заводе Уайтхеда, поэтому и прибор назван его именем[11].

С введением в торпеду гироскопа открылась возможность увеличивать дальность ее хода. Русские офицеры и механики-торпедисты быстро и в совершенстве овладели «секретом» изготовления гироскопов и в течение 3–5 лет после появления первого прибора в мастерских Николаева и Кронштадта, а потом на заводах Лесснера и Обуховском было налажено изготовление гироскопов с непрерывным улучшением их конструкции и технологии. В конце 1898 года состояние дела с изготовлением гироскопов торпед было таково, что Главное Управление Кораблестроения считало возможным выдать заказ Обуховскому заводу на 450 гироскопов. Намечалось, что ежегодный выпуск приборов составит около 100 единиц.

Успех в овладении сложным производством гироскопических устройств на флоте был в значительной степени обеспечен тем вкладом, который внесли русские ученые в теорию гироскопии. Всему миру известны работы в этой области С.В. Ковалевской, Д.К. Бобылева, Н.Е. Жуковского, А.Н. Крылова.

Творческий интерес русских ученых, офицеров-специалистов и мастеров-гироскопистов к вопросам теории и эксплуатации гироскопов явился основой для самостоятельных разработок и постановки массового производства гироскопических приборов отечественных образцов. Наряду с усовершенствованием конструкции гироскопа в 1908 году к нему было добавлено устройство для угловой стрельбы.

Появление в России своих подготовленных техников и инженеров, связанных с электротехникой, в свою очередь способствовало расширению ее применения.

Например, Павел Николаевич Яблочков (1847–1894), получил образование военного инженера – окончил в 1866 г. Николаевское инженерное училище и в 1869 Техническое гальваническое заведение в Петербурге. Выйдя в отставку, Яблочков переехал в Москву, где в 1873 г. был назначен начальником службы телеграфа Московско-Курской ж. д. Совместно с Н.Г. Глуховым он организовал мастерскую, где проводил работы по электротехнике, которые в дальнейшем легли в основу его изобретений в области электрического освещения, электрических машин, гальванических элементов и аккумуляторов. К 1875 г. относится одно из главных изобретений Яблочкова – электрическая свеча – первая модель дуговой лампы без регулятора, которая уже удовлетворяла разнообразным практическим требованиям. В 1875 г. Яблочков уехал в Париж, где не только сконструировал промышленный образец электрической лампы (французский патент № 112024, 1876), но разработал и внедрил систему электрического освещения («русский свет») на однофазном переменном токе. Система электрического освещения Яблочкова, пользовалась исключительным успехом на Всемирной выставке в Париже в 1878 г. Во Франции, Великобритании и США были основаны компании по ее коммерческой эксплуатации. Но практические опыты по освещению Петербурга начались только с марта 1879 г. Тогда были установлены первые восемь фонарей. К началу 1880 г. в Петербурге горели уже более пятисот электрических фонарей.

Но свечи Яблочкова уже были обречены.

К 1880 г. творческим гением другого русского электротехника Александра Николаевича Лодыгина была создана электрическая лампочка накаливания. После введения откачки воздуха из баллона лампочка накаливания могла гореть уже несколько часов. Работами Лодыгина заинтересовались в Академии наук, и, заслушав сообщение физика Вильда о лампах Лодыгина, присудила денежную премию имени М.В. Ломоносова в тысячу рублей. Осенью 1876 г. новыми лампами освещались места строительства нового Литейного моста через Неву. Попытки Лодыгина организовать коммерческое дело ни к чему не привели. Конкуренты из газовых осветительных компаний быстро привели его к финансовуму краху.

В 1877 г. друг Лодыгина, лейтенант флота А.М. Хотинский, был командирован в Америку для приемки построенных там для русского флота кораблей. Он взял с собой несколько лампочек Лодыгина и показал уже известному тогда изобретателю Томасу Эдисону. Как хороший бизнесмен Эдисон понял, что должен тотчас же бросить на неопределенное время все свои работы в телефонии, телеграфии, с фонографом и переключить полностью свою огромную лабораторию на разнообразные опыты по электрической лампочке накаливания. Работы заняли почти три года. Помимо технологических усовершенствований и подбора материалов в конструкцию ламп был внесен цоколь и патрон, дожившие до нашего времени, и выключатель, да и вообще выстроена система городского освещения. Когда 24 сентября 1881 г. Эдисон брал патент в России, он писал, что претендует лишь на «усовершенствование в проведении электрического света».

В 1890 г. Лодыгин сделал важное усовершенствование лампы накаливания; он изобрел лампу с металлической вольфрамовой нитью, которая была более экономичной, чем лампы с угольными волосками. Он получает патент на электрические лампы с металлической нитью из вольфрама, молибдена и других тугоплавких металлов. Молибденовые и вольфрамовые лампы Лодыгина демонстрировались на Парижской выставке 1900 году. В дальнейшем молибден и вольфрам станут высокоэффективными конструкционными металлами электровакуумных приборов. Это обеспечило еще большее распространение электрических ламп во всем мире. Их число стало измеряться миллионами, а потом и миллиардами.

Появление электрического освещения дало мощный толчок развития сильноточной электротехнике – электроэнергии требовалось все больше. И по-прежнему ведущие роли здесь играли представители Минной школы. Одним из них был Евгений Павлович Тверетинов, который а 1877 году окончил Минный офицерский класс, получив звание минного офицера второго разряда. 1 января 1878 года Е.П. Тверитинов был назначен 2-м флагманским офицером Минного отряда по электроосвещению (для заведования электрическим освещением)[12].

Именно Минные классы в 1878 г. оборудовали электрическое освещение свечами Яблочкова в Зимнем дворце, в казармах Кронштадта, а в 1879 г – в механических мастерских и эллинге. В течение 1881 года под руководством Тверитинова силами преподавателей и слушателей МОК и школы было осуществлено электрическое освещение по системе П.Н. Яблочкова пароходного завода в Кронштадте и большого Невского фарватера. 21 августа 1881 года, после освещения «электрическими свечами Яблочкова» учебных помещений МОК, зданий порта и цехов пароходного завода наступила очередь и Летнего сада в Кронштадте. В этот день командир МОК капитан 1 ранга В.П. Верховский доложил в Штаб Главного командира Кронштадского порта, что «Летний сад может быть освещен 12-ю электрическими огнями».

В 1879 году Тверитинов впервые оборудовал свечами Яблочкова боевые корабли, броненосцы «Петр Великий» и «Вице-адмирал Попов».

В том же году Е.П. Тверитинов занялся оборудованием электрического освещения Гатчинского дворца. В соответствии с отношением Канцелярии Морского Министерства Верховский 14 декабря 1881 года просит разрешения Главного командира Кронштадского порта об увольнении лейтенанта Тверитинова Е.П. в г. Гатчину для представления Государю Императору. 19 декабря Тверитинов отбывает к новому месту назначения. Большие шары-плафоны электрического освещения диаметром 50 см, предусмотренные для установки на плацу на опорах, были изготовлены и поставлены в Гатчину Товариществом «Яблочков – изобретатель и Ко». Поставку проводов для освещения Гатчинского дворца осуществляло представительство фирмы «Сименс и Гальске» в Петербурге. «Проводники освидетельствованы с технической стороны Минным офицером лейтенантом Тверитиновым и признаны годными», – сообщал 23 сентября 1881 года командир МОК в контору Кронштадтского порта.

В 1891 г. в России появился первое высшее учебное заведение – Электротехнический институт (ЭТИ) с четырехгодичным курсом обучения по-многим направлениям электротехники и, главным образом, по технике слабых токов. В положении об Электротехническом институте указывалось: «Электротехнический институт есть открытое учебное заведение, имеющее целью доставлять специальное образование, необходимое для занятия технических и административных должностей по ведомству почт и телеграфа, а также подготовлять преподавателей для местных почтово-телеграфных школ и вообще деятелей по разным отраслям электротехники». в котором будущие инженеры-электрики получат более широкое электротехническое образование.

Первым директором Электротехнического института был назначен Н.Г. Писаревский, а среди преподавателей были видные специалисты по электротехнике и телеграфной связи: П.А. Войнаровский, И.Г. Фрейман, А.С. Попов и др.

17 октября 1892 г. слушателем Минных офицерских классов становится Александр Адольфович Реммерт (1861–1931)[13], ставший ближайшим помощником изобретателя радио А.С. Попова, а в дальнейшем проведший огромную организационную работу по внедрению радио на флоте и развития отечественной радиопромышленности.


А.А. Реммерт


Появление нарезных орудий с относительно большой дальностью стрельбы требовали на море новых методов их наведения на цель в условиях качки. Заметным явлением стало появление в русском флоте систем управления огнем Давыдова, а затем Гейслера. С ее помощью управляющий стрельбой офицер мог передавать данные для стрельбы не голосом, что в бою подчас невозможно, а с помощью специальных указателей, установленных ближе к орудиям. Особенно это было важно для залповой стрельбы, что и позволило применить ее в боях Русско-турецкой войны 1877–1878 гг. Система Гейслера получила свое наименование по заводу, где она производилась.


Н.К. Гейслер


Николай Карлович Гейслер[14], основатель завода, родился в Санкт-Петербурге 2 января 1850 г. в семье выходцев из Германии. Отец со дня своего рождения жил в Санкт-Петербурге, имел небольшую мастерскую. С детства Н.К. Гейслер помогал отцу и постепенно научился слесарному делу. С окончанием телеграфной школы и за хорошие успехи в телеграфной технике Н.К. Гейслера назначили старшим механиком телеграфа. В 1871 г. он был принят механиком на завод немецкой фирмы «Сименс и Гальске». В дальнейшем он решил организовать свою мастерскую вместе со своим другом Я. Спаре и механиком И.Н. Деревянкиным.


Л.Х. Иозеф


Со своей идеей друзья направились к техническому руководителю Санкт-Петербургского телеграфа Н.В. Исполатову, который, внимательно выслушав их просьбу об организации мастерской по ремонту телеграфных аппаратов, удовлетворил ее. С 1874 г. мастерская начала работу. В 1884 г. Н.К. Гейслер пригласил на работу мастера с инженерным образованием – Людвига Христиановича Иозефа. Тот сразу проявил себя как прекрасный организатор производства, изобретатель и инженер. Вместе с Л.Х. Иозефом пришли и заказы по телефонии – ремонт телефонных аппаратов Бель-Бека (Л.Х. Иозеф был автором первого коммутатора для этих аппаратов). Теперь Н.К. Гейслер все заботы по организации производства, обеспечению материалами и сбыту передал Л.Х. Иозефу, а сам стал заниматься любимым делом – механикой.

В 1885 г. в мастерскую наведался специалист из Морского штаба. Он внимательно ознакомился с работами и предложил очень выгодный контракт в области телефонии.

В 1890 г. мастерская Н.К. Гейслера насчитывала 20 постоянно работающих специалистов. Мастерская расширилась и помещалась в трех квартирах. Возникла контора из двух человек. Появился новый вид работы в мастерской: ремонт кренометров (ртутные показатели горизонтального положения судна).

Главным достижением фирмы стало создание импульсной линии передачи данных от задающего электродвигателя (ключа) к приемникам, которая получила наименование «Системы Гейслера». К щеткам I, II, III ключа, расположенным через 120° подсоединены электромагниты I, II, III приемников. При вращении коммутатора ключа К контактная часть его барабана набегая под щетки, последовательно включает электромагниты I, II, III приемников, которые, срабатывая, притягивают свои якоря. Каждому переключению соответствует поворот оси О на 120°. Таким образом, механизм обеспечивает три фиксированных положения вала на один оборот. Наибольшая частота переключений не превышает 15 Гц, что соответствует скорости вращения 300 об./мин.







1
...
...
10