Читать книгу «Шипение снарядов» онлайн полностью📖 — Александр Прищепенко — MyBook.
image
cover
 















 






























































Вряд ли кто-либо заподозрит, что древний биплан с поршневым двигателем и неубирающимся шасси преодолел звуковой барьер. Поджать (очень незначительно) воздух перед собой ему удалось, но ударная волна со скачком плотности не образовалась. Но за сжатием воздуха следуют его разрежение и охлаждение, и конденсация паров воды сделала эту часть течения видимой (верхний левый снимок).

Конструкция и тяга двигателей стратегического бомбардировщика В-52 не позволяют и ему достичь сверхзвуковой скорости, хотя летит он, конечно, быстрее биплана и зоны конденсации образуются за каждой выступающей деталью (справа).

Палубный истребитель F-14 предназначен для воздушного боя на сверхзвуковых скоростях, его крылья изменяемой геометрии сложены, а двигатели работают так, что там, где газы их выхлопа достигают моря, вздымаются огромные столбы воды. Но и он пока не преодолел звуковой барьер – иначе воздух не успевал бы расступиться перед истребителем и сжимался бы им в область конической формы, со значительной плотностью и резкой границей. Такой «конус» стал бы видимым и «сел» бы на носовую часть самолета – так, как это случилось с летящей со сверхзвуковой скоростью пулей (слева внизу).

Из-за скачка плотности воздуха, ударную волну можно, увидеть, так как с увеличением плотности растет и показатель преломления, что вызывает смещение лучей света. Скачок уплотнения выглядит, как чередующиеся полосы большей и меньшей освещенности. Снимок пули сделан в 70-е годы XX века, а методы теневой съемки были детально разработаны германскими учеными в годы Второй мировой войны. Из теории ударных волн следует, что образуются они не только в носовой части летящего тела, но и на его оконечности. Мы слышим двойной хлопок головной и хвостовой ударных волн от пролетевшего со сверхзвуковой скоростью самолета, потому что его длина достаточно велика и волны возможно различить. Ударных волн от летящей пули – тоже две (одна «сидит» на головной части, другая образуется за хвостовой), но размеры пули на три порядка меньше, чем самолета, и наш орган слуха их не различает


Сформируется ли УВ и если да, то как близко к движущемуся телу, зависит от скорости тела и от того, насколько сжимаемому воздуху позволено «растекаться», сбрасывая избыточное давление. Летящий с небольшой скоростью биплан (рис. 1.20) воздух перед собой, конечно, слегка уплотняет, но не формирует ударную волну с резким скачком плотности, который было бы видно на носу машины. Другое дело – пороховые газы, вырвавшиеся из «Аризоны»: они расширялись во всех направлениях, так что сжатому на их фронте воздуху просто некуда было деваться – ему оставалось двигаться по нормали к фронту, поджимая все новые слои. Да и то, по нашим оценкам, такое течение привело к формированию УВ за тысячи метров от взрыва.


Если скорость движения превышает звуковую – УВ образуется, даже если воздух вокруг ничто не ограничивает (рис. 1.21): он просто «не успевает расступиться» и сжимается перед столь быстро летящим телом или движущимся газом. «Хлопки» самолета, пролетевшего со сверхзвуковой скоростью – выродившиеся на большом расстоянии в акустические, не способные ничего сломать или передвинуть ударные волны. Образуют «терзающую легкие и уши» ударную волну выстрел и детонация – потому что газы и в том и в другом случае движутся быстрее звука. На рис. 1.22 видно, что стрелок защитил свои уши от неприятного воздействия ударных волн. Тот же эффект дал бы и глушитель. Ну а чтобы сделать «молчаливой» гаубицу, для «гашения» куда большей, чем у револьвера, энергии ее газов, требуется и глушитель соответствующих размеров.

В метро поезд движется намного медленнее, чем расширялись пороховые газы, вырвавшиеся из «Аризоны», и уж тем более медленнее, чем газы детонации японских бомб и торпед. Мешают образованию ударной волны и помещения станций: в них, как в глушителе, «расплывается» воздушный поток. Так что ударной волны в метро можно не опасаться: длина тоннелей для этого недостаточна, хотя начальная фаза течения газа формируется: перед прибытием поезда стоящие на платформе ощущают «ветер» своими лицами…



Рис. 1.21

Ударные волны возникают не только благодаря деятельности человека. Вверху: компьютерная реконструкция Тунгусской катастрофы, произошедшей над сибирской тайгой в 1908 г. Метеорит (точнее – метеороид) представлял собой ядро неплотного льда весом порядка миллиона тонн. В правой верхней части рисунка видно, что еще при полете ядра в сравнительно разреженном воздухе образовалась УВ (конус ее справа вверху). При входе в более плотную атмосферу, выделение тепла стало столь интенсивным, что метеороид взорвался, сформировав более мощную и иной формы УВ, которая свалила и сожгла лес на площади более 2000 кв. км. Размеры «бурелома» позволили спустя полвека оценить энерговыделение процесса: оно оказалось таким же, как и при взрыве 20 миллионов тонн тринитротолуола. Внизу: после взрывного извержения курильского вулкана Пик Сарычева, в нагретых прошедшей ударной волной облаках конденсированные частицы воды вновь превратились в прозрачный пар, благодаря чему появилось «окно», через которое из космоса и было сфотографировано явление. Известный человечеству рекорд взрывного энерговыделения, произошедшего на поверхности Земли принадлежит вулкану Кракатоа: при извержении 1883 г., он был оценен, как эквивалентный пяти миллиардам тонн тринитротолуола. В воздух при этом было выброшено около 6 кубических километров пепла, а выродившаяся в акустическую ударная волна была слышна на удалении 4800 км.


Читатель наверняка заметил, что автор забежал вперед – стал приводить примеры, совсем не из того времени, когда бризантные ВВ и бездымные пороха «выходили на арену». Верно: теория ударных и детонационных волн стала достаточно полной лишь к середине XX века. До того взрывы исследовались методом «втыка» – все подбиралось опытным путем, потому что не было приборов для измерения характеристик длящихся ничтожные мгновения явлений, а без численных значений величин любая теория бесполезна. Гидродинамика в то время изучала объекты, область применения которых более соответствовала названию этой науки (рис. 1.23).



Рис. 1.22

Слева – выстрел из револьвера «Магнум» и образование при этом ударных волн. Внешняя, сферическая сформирована воздухом, вытесненным из ствола пулей, а внутренняя, также сферическая – пороховыми газами, вырвавшимися из ствола; конические ударные волны образованы летящей пулей. Плотность энергии внешней волны убывает с расстоянием, УВ замедляется. Видно, что впереди стрелка внутренняя УВ догнала и усилила внешнюю, заставив ее двигаться быстрее. Скорость ударной волны всегда превышает скорость звука в невозмущенной среде, где она распространяется, и обгоняет УВ звук тем заметнее, чем выше давление в ее фронте. Если это давление незначительно, то такую волну называют вырожденной: она мало чем отличается от акустической. В центре: глушитель, укрепляемый на стволе, значительно ослабляет звук выстрела: пороховые газы, сообщив вылетевшей из ствола пуле скорость, далее не расширяются свободно, а «расплываются» в отсеках глушителя: летящая пуля последовательно «открывает» для них все новые отсеки, в каждом последующем из которых давление меньше, чем в предыдущем. Когда пуля вылетает из глушителя, газы выходят из него уже с небольшой скоростью, не образуя ударную волну. Справа: 155-мм самоходная гаубица ведет огонь с использованием глушителя, громкий звук выстрела не демаскирует орудие







Рис. 1.23

Попытки создать «подводные снаряды» предпринимались еще в XV веке, но боевое оружие появилось лишь в 60-х годах XIX века. Торпеды тогда называли «минами Уайтхеда». Левый снимок в верхнем ряду – торпеда системы Бреннана, изготовленная в 1877 году (экспонат музея береговой обороны Гонконга). Винт приводился в движение сжатым воздухом, запасенным в баллоне. К началу Первой мировой войны сжатый воздух стали использовать для сжигания спирта, что существенно повысило энерговооруженность торпед. Германскую, тех времен, обнаружили и подняли со дна в прибрежном районе Средиземноморья в 80-е годы XX века (вверху справа). Корпус торпеды сделан из медного сплава, что и позволило изделию хорошо сохраниться. В центре – 610 мм японская (тип 93) торпеда времен Второй мировой, пожалуй, тогда – лучшая в своем классе оружия. На кислород-керосиновом топливе она развивала скорость до 48 узлов (почти 90 км/час), а вес ее зарядного отделения составлял 780 кг. После Второй мировой при создании торпед полагались более не на мощность заряда, а на точное наведение. Такой была британская электроторпеда «Стингрей» (нижний ряд слева), с эффективной акустической головкой. Однако скачок в энерговооруженности – применение борсодержащего горючего, окислителем которого служит морская вода – заставил отказаться от самонаведения: в реве ракетного двигателя ничего не «слышно». У советской подводной ракеты ВА-111 «Шквал» вместо винта – сопло и она управляется по проводам, зато «летит» сквозь водяную толщу со скоростью 200 узлов


…Торпеды двигались к цели несравнимо медленнее артиллерийских снарядов, да и дальноходность их уступала дальнобойности морской артиллерии крупных калибров. Корабль, на котором сигнальщики вовремя заметили след приближающейся торпеды, имел неплохие шансы уклониться от попадания. Но, с другой стороны, торпеда набирала скорость уже в воде, а выходила из аппарата медленно, практически не давая отдачи – и потому это оружие могли применять миноносцы, миноноски, катера и прочий малоразмерный, «москитный» флот[12]. Такие недомерки и подкрадывались: по ночам, используя плохую погоду. Если их торпеда попадала – последствия могли быть фатальными и для крупного корабля (рис. 1.24).

Автор полагает, что вместо нудных рассуждений о колебаниях атомов в молекуле воды, достаточно напомнить об ощущении, которое читатель когда-то испытал, прыгнув в воду и неудачно хлопнувшись при этом на живот. Чтобы разобраться, почему это так, опять возьмем в руки карандаши. Упрем торец одного из них в ладонь, а по другому – хлопнем другой ладонью. Карандаш тотчас и без всяких потерь передаст «принимающей» ладони приложенное усилие, потому что в условиях нашего опыта он несжимаем. Те же ощущения испытает и «хлопающая» ладонь. Повторим опыт, но не с карандашом, а с равной ему по длине полоской поролона – из тех, которыми забивают на зиму щели в окнах. Разница в ощущениях будет обусловлена тем, что поролон сжимаем очень хорошо.




Рис. 1.24

На испытаниях, проведенных в конце XX века, попадание единственной торпеды Мк-48 переломило британский фрегат постройки 60-х годов

Если между карандашами нет промежутков (среда несжимаема) – усилие передастся мгновенно и на сколь угодно большое расстояние[13]. Ударная сжимаемость воды, конечно, не нулевая, но она намного меньше, чем воздуха, а потому ударное давление в воде распространяется значительно быстрее (скорость звука в воде почти впятеро выше, чем в воздухе, а ударная волна всегда быстрее звуковой).

Но дело не в скорости фронта, а в том, какая масса вещества вовлекается в ударно-волновое движение, ведь плотность воды превышает плотность воздуха на несколько порядков! Поэтому неудивительно, что поток вещества «продавливает» не только тонкую обшивку бортов торговых судов, но и броню военных кораблей. Чтобы снизить эффект воздействия УВ на подводную часть корабля (рис. 1.25), перед главным броневым поясом устанавливали були противоторпедной защиты (рис. 1.26): за тонким броневым листом – значительный воздушный промежуток, чтобы «разгрузить» в нем ударно-сжатую воду и сохранить в целости основную броню. Такую защиту устанавливали только на линкорах, но и она спасала от торпед не всегда. На кораблях меньшего водоизмещения противоторпедная защита была менее громоздкой, поскольку считалось, что попаданий им помогут избежать скорость и маневренность.



Рис. 1.25

Испытания стойкости крупных кораблей к подводной ударной волне. Верхний снимок: модельный опыт воздействия ударной волны в воде на авианосец «Констеллейшн» (постройки 60-х годов). ВВ в этом опыте взорвали много (более тонны), но и расстояние до объекта значительно (для сравнения: длина авианосца – треть километра). Нижний снимок: авианосец «Орискани», построенный в годы Второй мировой войны, подобного испытания не выдержал


Рис. 1.26

На врезке – типовая схема противоторпедной защиты линейного корабля. На фотографии – японский линкор «Нагато» постройки 1920 г., по правому борту которого виден будь такой защиты. Снимок сделан после капитуляции Японии, 12 ноября 1946 года в порту Йокосука, откуда «Нагато» направился к тихоокеанскому атоллу Бикини, не пережив там испытательного подводного взрыва американского ядерного заряда


.. Наряду с гидродинамикой, к концу XIX века достаточно развитой стала и механика, позволившая вполне удовлетворительно описать процесс стрельбы. Орудия наводились уже не на глаз, а имели оптические прицелы (панорамы) и точные механизмы горизонтальной и вертикальной наводки (рис. 1.27). Изменились форма снарядов: они «удлинились» и несли куда больше снаряжения, чем такого же калибра ядра. Ну и конечно, получение высокопрочных, легированных сталей, а, главное, – исследования процесса горения порохов, позволили создать орудия приемлемых весов и габаритов, обладающих подвижностью на поле боя, снизив при этом до минимума вероятность разрывов стволов при стрельбе (рис. 1.28).

Достижения теоретической механики позволили также решить задачу о предотвращении кувыркания снаряда в полете и обеспечить его падение у цели головной частью вперед, чтобы безотказно сработал взрыватель. Для этого имеющимися в канале ствола нарезами снаряду придается вращение при движении, а остальное делает гироскопический эффект (рис. 1.29).




Рис. 1.27

Артиллерийские орудия с внедрением бездымных порохов стали выглядеть изящнее (ср. с рис. 1.5), а главное – стрелять дальше и – поскольку были снабжены оптическими приборами (панорамами) и прецизионными механизмами наводки – точнее. Слева на верхнем снимке – выстрел германской 150 мм полевой гаубицы, ниже – французская 75 мм пушка, объективно – одна из лучших в своем классе, но для решения задач позиционной войны недостаточно могущественная. Русская армия вступила в войну, имея на вооружении в полтора раза больше трехдюймовых (76 мм) орудий, чем французская – 75 мм. Справа – артиллерийская панорама конца XIX века


Попробуйте толкнуть вращающийся волчок: он не упадет на бок, а станет поворачиваться вокруг оси вращения, всегда – под прямым углом к направлению действия внешней силы. На вылетевший из ствола и делающий около 500 оборотов в секунду снаряд тоже действует сила – сопротивление воздуха – и он поворачивает ось своего вращения. Но сопротивление воздуха действует непрерывно. В том числе – и на уже слегка повернувшийся снаряд. Следствием будет прецессирование снаряда в полете.