Читать книгу «Математика флота. Фантастика и реальность» онлайн полностью📖 — Александра Козлова — MyBook.

Математика в военно-морской практике

Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур, пространств и изменений. Но в этой книге нас больше всего будет интересовать практическое применение математики именно в морском деле. Интересно, что о применении математики в судостроении древних культурных народов почти не сохранилось никаких данных. Знаний, по которым инженер мог бы составить ясное представление о судах, их устройстве, способах их проектирования и постройки, длительное время просто не существовало. Рассказы некоторых историков по большей части свидетельствуют об их технической безграмотности и легковерии. Между тем начало судостроения восходит задолго до всякой письменности и всякой истории. Чертежей тогда, по-видимому, не было, или они изготовлялись на покрытых воском дощечках или временных деревянных помостах вроде тех, которыми и теперь пользуются кустари при постройке речных барж; ясно, что от этого ничего не сохранилось, да и не могло сохраниться.

Здесь, видимо, все шло преимущественно чисто практически, передаваясь от отца к сыну, от мастера к ученику, а не как наука. Даже основной закон о равновесии плавающих тел, разработанный Архимедом за 250 лет до нашей эры, был впервые применен к делу судостроения лишь в 1660-х годах Антонием Дином в Англии, когда в ней уже был Ньютон, математический гений которого почитается одинаково с гением Архимеда. А первые руководства по «Теории корабля» появились только в 1740-х годах. В них впервые было установлено учение об остойчивости корабля. В начале 1800-х годов, по почину английских судостроителей Сеппингса и Саймондса, была усвоена польза и необходимость диагональных связей, придававших крепость и неизменяемость судовому борту; теория этого дела была обоснована физиком Юнгом.

В 1840-х годах началась постройка железных паровых судов; она стала быстро развиваться, но здесь довольно долгое время (около 30 лет) шли ощупью и сохраняли не только ненужное, но даже вредное наследие деревянного судостроения, вроде толстого, на ребро поставленного полосового киля. Лишь в 1870 году Рид дал до сих пор сохранившиеся практические приемы вычисления остойчивости корабля набольших наклонениях и расчеты напряжений, возникающих в связях корабля на волнении. Сталь в судостроении введена с начала 1800-х годов.

Уже в наше время, в годы войны, – 1941–1945 – видную роль сыграли математики Московского университета. Существенное значение для решения некоторых практических задач имело развитие в Московском университете одного из разделов математики, изучающей теорию и способы построения особых чертежей-номограмм. Номограммы позволяют значительно экономить время вычислений, максимально упрощают расчеты ряда задач. Работу специального номографического бюро при Научно-исследовательском институте математики МГУ возглавлял известный советский геометр Н. А. Глаголев. Номограммы, подготовленные в этом бюро, применялись в военно-морском флоте, зенитной артиллерии, оборонявшей советские города от налетов вражеской авиации.

Выдающийся математик Алексей Николаевич Крылов создал таблицу непотопляемости, по которой можно было рассчитать, как повлияет на корабльзатоплениетех или иных отсеков; какие номера отсеков нужно затопить, чтобы ликвидировать крен, и насколько это затопление может улучшить устойчивость корабля. Использование этих таблиц спасло жизнь многим людям, помогло сберечь огромные материальные ценности. Специальные бригады ученых-математиков занимались только расчетами. Сложнейшие задачи решались лишь с помощью логарифмических линеек и арифмометра.

Работая в области теории вероятностей, наши ученые-математики определили размеры каравана судов и частоту их отправления, при которых потери были бы наименьшими. В осажденном Ленинграде великий математик Яков Исидорович Перельман прочитал десятки лекций воинам-разведчикам Ленинградского фронта, Балтийского флота и партизанам о способах ориентирования на местности без приборов.

Научные разработки учёных-математиков сыграли большую роль в победе над фашизмом, а именно:

• А.А. Ляпунову принадлежит разработка математической теории управляющих (кибернетических) систем. Он создал первые учебные курсы программирования и разработал операторный метод – по существу первый язык программирования, отличающийся от языка систем команд ЭВМ и разработанный до появления алгоритмических языков типа АЛГОЛ, и другие.

• Юрий Владимирович Линник (1915–1972) и Анатолий Петрович Александров (1903–1994) разработали «Метод защиты кораблей от магнитных мин». Перед началом Великой Отечественной войны они совместно с И.В. Курчатовым и В.М. Тучкевичем, разработали метод защиты кораблей от магнитных мин путем размагничивания кораблей, получивший название «система ЛФТИ». Корабли, оснащенные такими системами, проходя над миной, не вызывали срабатывания её магнитного взрывателя.

• В апреле 1942 года коллектив математиков под руководством академика С. Бернштейна разработал и вычислил таблицы для определения местонахождения судна по радиопеленгам.

• В 1938 г. Б. В. Булгаков разработал фундаментальные основы теории инерциальных систем навигации. Указал, что при маневрировании объекта стабилизированная площадка будет иметь девиации.

• Я.Н. Ройненберг разработал методы компенсации баллистических девиаций гироскопических приборов, возникающих вследствие маневрирования корабля. Была разработана теория силовых гироскопических стабилизаторов.

• В работах А.Ю. Ишлинского была развита теория гироскопических приборов и устройств как систем взаимосвязанных твёрдых тел с учётом их конструктивных и технических особенностей.

• Андрей Николаевич Колмогоров (1903–1987) и Николай Гурьевич Четаев (1902–1959) разработали «Теорию стрельбы».

Отдельно нужно сказать о статистике в военном деле. Имеется аспект работы советских математиков на помощь фронту, о котором нельзя умалчивать – это работа по организации производственного процесса, направленная на повышение производительности труда и на улучшение качества продукции. Здесь специалисты столкнулись с огромным числом проблем, которые по самому их существу нуждались в математических методах и в усилиях математиков.

Затронем здесь лишь одну проблему, получившую наименование контроля качества массовой промышленной продукции и управления качеством в процессе производства. Эта проблема со всей остротой возникла перед промышленностью уже в первые дни войны, поскольку прошла массовая мобилизация и квалифицированные рабочие стали солдатами. Им на смену пришли женщины и подростки без квалификации и рабочего опыта.

Один из математиков вспоминает такой случай: «Мне пришлось быть на одном из приборостроительных заводов в Свердловске. Он изготовлял крайне необходимые приборы для авиации и артиллерии. У станков я увидел практически только подростков 13–15 лет. Увидел и также огромные кучи бракованных деталей. Сопровождавший меня мастер пояснил, что эти детали выходят за пределы допуска и поэтому непригодны для сборки. А вот если бы удалось собрать из этих «запоротых» деталей пригодные приборы, мы бы смогли сразу удовлетворить потребности на месяц вперед. Слова мастера не давали мне покоя. В результате общения с инженерами завода родилась мысль разбить детали на 6 групп по размерам, которые уже было бы возможно сопрягать между собой. В шестую группу входили детали, совершенно непригодные для сборки. Исследования показали, что так собранные приборы оказались вполне пригодными для дела. Они обладали одним недостатком: если какая-либо деталь выходила из строя, то ее можно было заменять лишь деталью той же группы, из деталей которой собран прибор. Но в ту пору и для тех целей, для которых были предназначены приборы, можно было обойтись заменой приборов, а не деталей. Нам удалось успешно использовать завалы испорченных подростками деталей…»

Задача контроля качества изготовленной продукции состоит в следующем. Пусть изготовлено N изделий, они должны удовлетворять некоторым требованиям. Скажем, снаряды должны быть определенного диаметра, не выходящего за пределы отрезка [D1, D2], иначе они будут непригодны для стрельбы. Они должны обладать определенной кучностью при стрельбе, иначе будут затруднения при стрельбе по цели. И если с первой задачей справиться легко – нужно замерить диаметры изготовленных снарядов и отобрать те из них, которые не удовлетворяют требованиям, то с другим требованием положение значительно сложнее. Действительно, чтобы проверить кучность стрельбы, необходимо провести стрельбы. А что же останется после испытаний? Испытания нужно произвести так, чтобы подавляющая часть продукции осталась пригодной для дальнейшего использования.

Как же по испытанию малой части изделий научиться судить о качестве всей партии? Методы, которые были для этой цели предложены, получили название статистических. Их теория берет свое начало с одной работы 1848 года академика М.В. Остроградского. Позднее этой задачей занимались профессор В. И. Романовский (1879–1954) в Ташкенте и его ученики. Во время войны их совершенствованием нанялся А.Н. Колмогоров и его ученики.

Задача, о которой только что было рассказано, обладает одним дефектом в самой ее постановке: партия продукции уже изготовлена и нужно сказать, можно ее принять или же следует ее отвергнуть? Но, спрашивается, зачем же изготовлять партию, чтобы ее затем браковать? Нельзя ли так организовать производственный процесс, чтобы уже при изготовлении поставить заслон для изготовления некачественной продукции?

Такие методы были предложены и получили название статистических методов текущего контроля. Время от времени со станка берутся несколько (скажем пять) только что изготовленных изделий и замеряются параметры их качества. Если все эти параметры находятся в допустимых пределах, то производственный процесс продолжается, если же хотя бы одно изделие выходит за пределы допуска, то подается сигнал о необходимой переналадке станка или о смене режущего инструмента. Какое отклонение параметра от номинала допустимо, чтобы вся партия была изготовлена качественно? Это требует специальных расчетов.

После окончания войны выяснилось, что аналогичные исследования проводили математики США. Они подсчитали, что результаты их работы принесли за годы войны стране миллиардную экономию. То же самое можно сказать и о работах советских математиков и инженеров.

Велик личный вклад признанных учёных и только начинающих математиков, учителей и студентов в победу, которые принимали участие в военных действиях, руководили отрядами, находились в окружении и блокаде.

Огромное значение имели труды ученых математиков в военные годы. Нельзя нам забывать и того, что по многим параметрам к концу войны наши танки, самолеты, артиллерийские орудия стали совершеннее тех, которые противопоставлял нам враг.

Нельзя забывать, что в конце войны мы вынуждены были вплотную заняться созданием собственного атомного оружия, а для этого пришлось объединить интеллектуальные усилия физиков, химиков, технологов, математиков, металлургов и самостоятельно пройти тот путь, который уже был пройден США и их западными союзниками. Мы его прошли сами.

Победа в Великой Отечественной войне стала историческим рубежом в судьбах человечества. Героический порыв в годы войны получил продолжение в стремительном послевоенном восстановлении разрушенного хозяйства, развитии науки, выходе в космическое пространство, создании ядерного щита и в конечном итоге – превращении Советского Союза в могучую сверхдержаву. Во всем этом – величие и историческое значение великих умов России!

И это лишь малая часть примеров эффективного применения математики в военно-морской практике. Далее в книге будет подробно рассказано о том, как математика для флота становится одной из самых востребованных научных дисциплин.