Если мы перейдем в систему координат, связанную с частицами, то поймем, что экваториальная составляющая их скорости не изменится. С меридиональной составляющей все будет иначе: ведь лишь при абсолютно упругом соударении частицы стукнутся друг о друга и разлетятся прочь, как резиновые мячики. Но атомы (а протогалактическое облако состоит из ионизованных или неионизованных атомов) ведут себя не как резиновые мячики. При ударе атомы могут перейти в возбужденное состояние, на что будет затрачена часть кинетической энергии частиц. Как следствие, разлет частиц прочь друг от друга будет происходить с меньшей скоростью, чем скорость их сближения до удара, а возбужденные атомы со временем избавятся от избытка энергии, спонтанно испустив кванты, и эти кванты скорее всего беспрепятственно покинут протогалактическое облако. Меридиональная составляющая скорости частиц уменьшится, а экваториальная не изменится.
На практике, конечно, столкновения между частицами во вращающемся облаке носят самый замысловатый характер, но наша простейшая модель помогает понять главное: облако будет сплющиваться, причем пресловутая центробежная сила тут решительно ни при чем. Дальнейшее зависит от плотности облака: если основная часть газа успеет превратиться в звезды до достижения облаком сплюснутости, характерной для галактик Е7, то родится эллиптическая галактика. Ведь механизм сплющивания перестанет действовать, поскольку газ будет собран в звездах, а столкновение звезд в галактике – явление настолько редкое, что его не стоит принимать во внимание.
Если же начальный момент вращения облака велик, то облако успеет сжаться до кондиций спиральной галактики еще до фазы активного звездообразования. Разовьется неустойчивость, в результате чего появятся спиральные рукава и, возможно, бар. Самая заметная часть излучающего вещества будет собрана в галактическом диске, а наиболее яркой его частью станет спиральный узор.
А почему, собственно говоря, он наиболее яркий? А потому, что в спиральных рукавах собраны молодые горячие звезды высокой светимости. Скажем, типичная звезда спектрального класса О5[8] имеет массу порядка 30 масс Солнца и светимость порядка 200 тыс. солнечных. Старыми такие звезды не бывают, вернее, их старость и смерть наступают еще в детском возрасте. (Астрономы пользуются термином «инфантильные объекты».) Логично предположить, что коль скоро горячие звезды высокой светимости сконцентрированы преимущественно в спиральных рукавах, то они там и родились. Хуже того: там им суждено провести всю свою недолгую (зато какую яркую!) жизнь.
Доказано, что скорость движения звезд вокруг центра какой бы то ни было спиральной галактики и скорость вращения ее спирального узора – совсем не одно и то же. В самом деле, за время существования Вселенной галактики должны были совершить не один десяток оборотов, а спиральные рукава редко закручиваются более чем на один-два оборота. В чем дело? А в том, что рукава – это не какие-то материальные образования, а волны плотности, обращающиеся вокруг галактического центра практически как твердое тело. По силовым линиям галактического магнитного поля в рукава натекает ионизованный газ, сталкивается здесь с уже имеющимся газом, и образующаяся ударная волна запускает процесс звездообразования. Именно в спиральных рукавах и барах звездообразование идет интенсивнее всего. Именно поэтому там много горячих молодых ярких звезд. (Разумеется, там хватает и менее ярких звезд, но не они главным образом «ответственны» за спиральный узор.)
Центральный балдж, шаровые скопления и звезды галактического гало – иное дело. В отличие от плоской подсистемы звездного населения спиральной галактики, представленной галактическим диском с рукавами, они образуют сферическую подсистему. Ее вращение вокруг галактического центра происходит совершенно иначе (гораздо медленнее), а сплюснутость если и наблюдается, то невелика. Совершенно очевидно, что шаровые скопления и звезды балджа образовались из локальных уплотнений на самых ранних стадиях формирования галактики, когда она еще была более или менее сфероидальным облаком.
Итак, в каждой спиральной галактике (и в нашей тоже) существуют две подсистемы: сферическая и плоская. Раньше их называли звездным населением I и II типа соответственно, но эта терминология была не вполне точна: ведь в подсистемы входят не только звезды, но и газово-пылевая материя. В нашу эпоху крупные газово-пылевые облака не обнаруживают сколько-нибудь заметной концентрации к галактическому центру, зато уверенно концентрируются к галактическому экватору. Не зря по экватору всех спиральных галактик проходит полоса пыли.
Между прочим, Солнце обращается вокруг центра Галактики почти в плоскости галактического экватора, расстояние до которого от нас в нашу эпоху составляет всего-навсего 30 световых лет – и это при том, что толщина галактической «линзы» на данном удалении от центра Галактики никак не менее 1000 световых лет. Слой галактической пыли, внутри которого находится Солнце, сильно мешает астрономам наблюдать объекты, расположенные под малым углом зрения к галактическому диску, поскольку активно поглощает лучи видимого частотного диапазона. Например, слой пыли между Солнцем и центром Галактики ослабляет видимый свет на 27 звездных величин! Поскольку разница в одну звездную величину соответствует «в разах» 2,512, то нетрудно подсчитать, что ослабление на 27 звездных величин эквивалентно ослаблению примерно в 6 млн. раз. В оптическом диапазоне наблюдения центра Галактики, а тем более внегалактических объектов в направлении на него практически невозможны – приходится обходиться средствами инфракрасной и радиоастрономии.
Печально? Для астрономов – да. Но галактическая пыль – это чрезвычайно важно. И не только потому, что без нее не было бы планет земной группы, а следовательно, и нас с вами, – пыль, как мы увидим далее, играет заметную роль в процессе звездообразования. Нельзя рассказывать о рождении Солнца, не разобравшись с ролью межзвездной пыли.
Прежде всего: откуда она берется?
Мы помним, что после краткого периода ядерных реакций в очень молодой расширяющейся Вселенной вещество было представлено крайне убогим набором химических элементов: водород, гелий, немного лития – и только. Эти три элемента вместе с их изотопами совершенно не склонны слипаться в некие агрегаты, образуя пылинки. Молекулы водорода Н2, способные образовываться при небольших температурах и разрушающиеся при нагревании, – вот по сути и все, на что способна столь бедная смесь элементов. Можно считать, что химическая история Вселенной (и нашей Галактики, конечно) началась лишь в звездную эпоху.
Наша Галактика с ее четырьмястами миллиардами звезд считается как минимум гигантской; некоторые классификации относят ее даже к сверхгигантским. Таких галактик, как наша, одна на тысячу. Хвастаться тут, конечно, нечем (и не перед кем) – важно понять, что благодаря значительной массе газового облака, давшего начало Галактике, процесс ее формирования был довольно быстрым. Разумеется, сверхгигантские Е-галактики вроде NGC6166, чья масса оценивается в 14 трлн солнечных масс, сформировались еще быстрее, но не в этом дело. Важно понять, что по сравнению с Солнечной системой Галактика довольно стара: ей никак не менее 12 млрд лет. За время, прошедшее от рождения первых звезд Млечного Пути до возникновения Солнечной системы, химическая история Галактики успела продвинуться далеко вперед.
Широко известен источник горения звезд: ядерные реакции превращения водорода в гелий. Они вроде бы ничего не добавляют к убогому первоначальному набору химических элементов, составляющих материю Вселенной. Правда, в боковой ветви протон-протонной реакции образуются бериллий и бор, но они же большей частью и тратятся в недрах звезды на образование того же гелия. Откуда берутся более тяжелые элементы?
В межзвездном пространстве ядерные реакции не идут – следовательно, тяжелые элементы рождаются опять-таки в звездах. Но не во всех. Водородное «горючее» звезды – ресурс принципиально исчерпаемый. Предположим, что в плотном и горячем ядре некой звезды, где как раз и шли ядерные реакции, водорода больше не осталось. Что произойдет? Звезда начнет понемногу остывать и со временем погаснет?
Да, если ее масса менее 0,35 массы Солнца. Нет – если масса звезды превышает указанный порог. В этом случае после исчерпания водородного «горючего» центральные области звезды сожмутся и разогреются, температура в центре звезды превысит 100 млн К (вместо 10–20 млн К для «нормальной» звезды), и «включится» другая ядерная реакция – тройной гелиевый процесс. Суть этой реакции в том, что при столь значительной температуре две альфа-частицы (ядра гелия) могут, преодолев кулоновский барьер отталкивания, слиться в ядро неустойчивого изотопа бериллия-8. Последнее скорее всего распадется обратно, но может так случиться, что в него врежется еще одна альфа-частица, обладающая высокой энергией. В этом случае образуется устойчивый изотоп углерода-12 и выделяется энергия. Светимость звезды увеличивается по сравнению с «нормальной» в десятки, если не сотни раз, ее внешние области сильно разбухают и охлаждаются до 2500–3500 К, и звезда становится красным гигантом. Подобные звезды широко известны, скажем, красный Альдебаран в созвездии Тельца – типичный красный гигант.
Если масса звезды достаточна, то ядерные реакции не прекращаются и после «выгорания» гелия в центральных областях. Температура звездных недр вновь повышается, и тогда становятся возможны (и действительно идут) реакции между углеродом и гелием с образованием кислорода и других элементов. Внутри звезды возникает слоистый источник энерговыделения: ближе к поверхности идут реакции на еще уцелевшем водороде, глубже – тройная гелиевая реакция, а еще глубже – самые разнообразные реакции между углеродом и гелием, а также между гелием и кислородом, азотом и т. д. Суть этих реакций – в последовательном присоединении альфа-частиц. Таким путем образуются все более тяжелые элементы – вплоть до «железного пика». Элементы тяжелее железа, никеля, кобальта в недрах «обычных» (пусть сверхгигантских по светимости) звезд не образуются. Нет, ядерные реакции, в результате которых могли бы образоваться и более тяжелые элементы, в принципе существуют, но они идут с поглощением энергии, а значит, как только они начинаются, температура недр звезды падает, и эти реакции прекращаются сами собой – типичный пример отрицательной обратной связи, стабилизирующей текущую ситуацию.
Но откуда во Вселенной взялись элементы тяжелее железа? Ведь на Земле существуют месторождения меди, свинца, ртути, золота, урана. И каким образом тяжелые элементы попадают из звездных недр в межзвездную среду? Неужели звезда выбрасывает их, подобно тому как Солнце выбрасывает поток частиц, известный под именем «солнечного ветра»?
Ни в коем случае. Солнце выбрасывает лишь электроны, протоны, ядра гелия, а доля более тяжелых элементов в «солнечном ветре» невелика. Правда, изредка встречаются «коптящие» звезды – массивные красные сверхгиганты высокой светимости с раздутыми холодными атмосферами, охваченными бурной конвекцией. Эти звезды действительно выбрасывают углерод, причем в виде пыли – отсюда и название. Но не так уж много того углерода. И как быть с остальными элементами?
Типичный красный гигант оканчивает свое существование превращением в белый карлик – крошечную звездочку низкой светимости. Внешние же области красного гиганта отделяются от него с небольшими (порядка десятков километров в секунду) скоростями и образуют так называемую планетарную туманность (рис. 8-10 на цветной вклейке), постепенно рассеивающуюся в пространстве[9]. Однако и планетарные туманности не могут обеспечить наблюдаемое во Вселенной (и особенно на Земле) обилие элементов.
Взрывы сверхновых звезд – вот тот «плавильный тигель», где образуются элементы тяжелее железа, и одновременно способ их доставки в межзвездную среду. Нет необходимости в рамках этой книги описывать быстротекущие (порядка одной-двух секунд) процессы, происходящие во время взрыва звезды. Описание этих процессов, к тому же далеко еще не изученных, увело бы нас слишком далеко от темы. Важно запомнить: во время этих катастрофических процессов вблизи ядра звезды при колоссальных давлениях, создаваемых ударной волной, и температурах порядка триллиона кельвинов в быстротекущих ядерных реакциях создается все разнообразие тяжелых элементов. Взрыв приводит к выбросу газовой оболочки, обогащенной этими элементами, в межзвездное пространство со скоростями от 1000 до 10 000 км/с. На месте бывшего сверхгиганта остается весьма компактный объект – нейтронная звезда, а расширяющаяся газовая оболочка постепенно тормозится о межзвездную среду (обжимая ее локальные уплотнения и стимулируя тем самым звездообразование) и мало-помалу рассеивается.
Так межзвездная среда обогащается химическими элементами. Обилие тех или иных элементов определяется прежде всего вероятностью соответствующих ядерных реакций и наличием «сырья» для их протекания. В общем и целом наблюдается понятная закономерность: чем элемент тяжелее, тем меньше его во Вселенной, хотя и тут есть свои «пики» и «провалы». Например, в земной коре не так уж мало (относительно, конечно) урана-238, несмотря на то что этот изотоп нестабилен, с периодом полураспада 4,5 млрд лет, зато ничтожно мало (десятки миллиграммов) астата. Основную причину такой «несправедливости» следует искать в конкретных ядерных реакциях, идущих при взрывах сверхновых звезд.
Но общее количество тяжелых элементов, выбрасываемых при взрывах звезд, довольно велико, и эти элементы присутствуют в космосе преимущественно в виде пылинок, формирующихся по мере остывания расширяющегося облака продуктов взрыва. Так, например, известный радиоисточник Кассиопея А – самый мощный объект своего класса, являющийся остатком взрыва сверхновой, вспыхнувшей около 1680 года, содержит достаточно пыли для образования десяти тысяч таких планет, как Земля. И это еще самая скромная оценка. Выходит, что при взрыве звезды в космос было выброшено весьма значительное количество тяжелого вещества – не менее 3 % массы Солнца.
По современным представлениям, многократно подтвержденным наблюдениями, звезды рождаются из холодной газовопылевой материи. В очень молодой Галактике, лишенной тяжелых элементов, но с уже достаточно остывшей газовой средой, рождалось очень много массивных горячих звезд с ничтожным (по астрономическим меркам) сроком жизни. Взрываясь как сверхновые, эти звезды быстро обогатили межзвездную среду газом и пылью. Астрономам пока еще не удалось найти в Галактике звезду, полностью лишенную тяжелых элементов (а наличие их в звездных фотосферах запросто «ловится» спектроскопией). Пока что рекордсменом по химической бедности является одна слабая звездочка в галактическом гало – она в 100 тысяч раз беднее тяжелыми элементами, чем Солнце. Ясно, что говорить о наличии у этой звезды планет земного типа не приходится – им просто неоткуда взяться.
Отсюда понятно, что Солнце, коль скоро мы живем на поверхности его твердого спутника, никак не могло быть звездой «первого поколения» – оно образовалось значительно позже, когда обилие тяжелых элементов в газово-пылевой материи Галактики было уже близким к современному. Вообще считается, что любой атом Земли (и вашего тела, читатель) в прошлом трижды побывал в недрах звезды – в среднем, конечно. Иначе откуда бы взялось то обилие элементов, которое обеспечивает столь сложные химические процессы, какие протекают в живых организмах?
О проекте
О подписке