Читать книгу «Технология интеллектуального образования: научные основы. Монография» онлайн полностью📖 — Александра Фролова — MyBook.
image























Наиболее детально, на процессуальном уровне, с указанием конкретных последовательных операций, структура научно-познавательной деятельности приведена в работах [40, С. 17; 41, С. 3] и на рис. 3.2.



Рис. 3.2. Схематическое представление процессуальной структуры научно-познавательной деятельности


Действительно, «запуск» любой познавательной деятельности, в том числе – научно-познавательной, происходит в результате выделения из окружающего мира или внутреннего мира человека явления, которое почему-либо оказывается значимым для человека, то есть является источником мотивации указанной деятельности. При этом в рамках практического мышления такое выделение не вербализуется (классическое «знаю, но сказать не могу»), что не препятствует развитию познавательной деятельности в конкретном направлении вообще. Однако в случае научно-познавательной деятельности необходимо учитывать, что наука, по определению, есть«деятельность по получению нового знания» [12, С. 20], теоретичного, сверхчувственного, умопостигаемого и рационального. Поскольку наука является формой общественного сознания, для возможности достаточно однозначной трансляции ее представлений указанное выделение должно быть оформлено не просто вербально, но строго понятийно. Необходимо учитывать принципиальное различие между формированием понятия [7] и определением понятия, посредством которого и обеспечивается однозначность трансляции научных представлений с учетом индивидуальности личностного восприятия. Таким образом, выделение явления (проблемной ситуации) из мира оформляется введением определения соответствующего понятия или системы понятий. Только в таком случае можно говорить о последующей целенаправленной научно-познавательной деятельности.

Рассмотрение выделенного явления должно быть системным, то есть в естественной взаимосвязи с другими элементами системы явлений. Эта взаимосвязь воспринимается нами как внутренне присущая системе или ее части особенность, свойство. Очерчивание такого системно определенного круга явлений, в котором рассматривается интересующее нас явление, должно быть четким и формализованным, что также возможно только на понятийно обеспеченном языке. Наконец, для описания выделенного из мира явления необходимо введение меры этого явления или связанного с ним свойства системы. Как будет показано ниже, в главе 4, формирование определения понятия «автоматически» вводит такую меру либо указывает на способ ее введения. В качестве примера можно привести введение определений физических величин, которые являются мерами физического явления или физического свойства. Эти определения являются не чем иным, как определениями соответствующих мерам понятий.

В результате совокупность перечисленных первых трех элементов структуры научно-познавательной деятельности формирует универсальный относительно субъектов деятельности язык, посредством которого процесс и результат этой деятельности могут быть транслированы. Единственность и универсальность этого языка обеспечивают возможность осознания смысла деятельности и, соответственно, как мотивацию ее развития в конкретной познавательной ситуации, так и возможность обучающей трансляции модели этой деятельности.

Вот теперь, когда мы четко понимаем, о чем говорим, что исследуем, и когда есть определенная нами осознаваемая мера предмета исследования, можно проводить измерения.

Однако единичное измерение не имеет смысла: его результат нельзя обсуждать при отсутствии результатов других аналогичных измерений, то есть при отсутствии возможности сравнения. Но, как только появился второй результат – неважно, каким образом нам стало о нем известно – мы имеем дело с зависимостью какого-либо явления от его причины, с причинно-следственной зависимостью. Вот ее-то мы и устанавливаем, измеряя причину и следствие с целью нахождения функциональной связи между ними. Причина всегда характеризуется тем или иным параметром рассматриваемой системы, а следствие – мерой изучаемого явления или свойства. Поскольку в принципе можно измерить все, что угодно, мы это «что угодно» постоянно измеряем и мыслим именно зависимостями, а не результатами единичных измерений. Это справедливо для любой направленности научно-познавательной деятельности – в математике, физике, кулинарии или межличностных отношениях. Зависимость описывается совокупностью результатов измерений причины и следствия. Если речь идет о графическом представлении зависимости, то это совокупность точек, связывающих только измеренные значения величин причины и следствия, в определенном пространстве. Например, зависимость числа друзей конкретного человека (в соответствии с его представлениями) от его возраста представляет собой совокупность точек в пространстве «возраст – число друзей». Эти точки связывают возраст, в котором проводилось измерение, с числом друзей, которое, по мнению данного человека, соответствовало этому возрасту. Зависимость не отображается произвольно проведенной относительно указанных точек линией. Тем более бессмысленно соединение на графике экспериментально полученных точек отрезками прямой линии.

Если причинно-следственная связь устойчива, то она проявляется при измерении соответствующей зависимости в различных условиях. В таких случаях можно говорить о наличии у наблюдаемых зависимостей выраженных общих черт. Например, речь может идти о возможности приближения (описания) таких зависимостей одной и той же аналитической функцией с разными значениями параметров. Тогда можно говорить о закономерности – наличии выраженных общих черт однотипных причинно-следственных зависимостей, полученных в разных условиях.

Наличие закономерности позволяет предложить модель причинно-следственной зависимости, то есть, в конечном итоге, модель изучаемого явления. Модель – это наше упрощенное, идеализированное представление о наиболее существенных сторонах явления. В качестве математического выражения модели обычно рассматривается аналитическая функция, поскольку только такое представление может быть именно математически проанализировано для любых возможных значений мер причины и (или) следствия и, следовательно, может допускать экстраполяции в области ненаблюдаемых экспериментально значений. Это сообщает модели определенную предсказательную силу, что и является, собственно говоря, целью научного познания. Необходимо отметить следующее чрезвычайно важное обстоятельство: модель явления может появиться только на этом этапе научного познания. Если в литературных источниках говорится о наличии модели в самом начале рассмотрения явления, то в лучшем случае имеется в виду «свернутое» прохождение в подсознании всех описанных здесь предыдущих шагов научно-познавательной деятельности. Обычно же в таких случаях имеет место не научно-познавательный, а прецедентный подход к выбору модели: выделив явление из мира, субъект деятельности ищет соответствующий прецедент и выбирает готовую модель еще до начала проведения исследования. Это, к сожалению, характерно для большинства дидактических материалов на всех уровнях непрерывного образования, что негативно сказывается на адекватности представлений обучающихся о рассматриваемой структуре.

Формализованное отображение модели представляет собой закон. Способ формализации один – математический. Вербальная формализация модели есть частный случай математической. Здесь важна однозначность понимания модели всеми участниками научно-познавательной деятельности. Далее, в главе 5, проблема закона будет рассмотрена подробнее, здесь же мы только отметим, что закон – это модельное представление о необходимой, существенной, устойчивой и воспроизводимой причинно-следственной связи между явлениями. В рамках модели и в границах применимости, обусловленных моделью, закон справедлив безусловно и является единственной основой для сознательного неотвратимого и безошибочного решения соответствующих задач.

Однако проблемные ситуации, с которыми мы сталкиваемся, чрезвычайно редко могут быть описаны простейшими моделями, для которых справедливы законы. Поэтому для решения задач, приближенных к реальным условиям, необходимо вывести следствие из закона, учитывающее усложнение модели. Важно понимание того обстоятельства, что закон устанавливается строго в результате описанной выше последовательности действий. Следствие же из закона всегда является нашим домыслом и нуждается в проверке все новыми и новыми решениями задач.

Задача решается на основании закона или следствия из него. Решается, как уже было сказано выше, сознательно, неотвратимо и безошибочно.

Но в структуре научно-познавательной деятельности есть еще один, чрезвычайно важный, элемент. По окончании описанного исследовательского цикла неизбежен переход к рассмотрению новых явлений. В частности, в связи с тем, что научное знание имеет принципиально уровневый характер, это может быть переход, связанный с новым, более высоким уровнем рассмотрения исходно выделенного из мира явления. Этот элемент структуры научно-познавательной деятельности лежит в основе идеи непрерывности образования.

Предложенная здесь процессуальная модель структуры научно-познавательной деятельности (рис. 3.2) является результатом рассмотрения большого числа ставших классическими научных работ. Ее адекватность проверить достаточно просто. Читателю предлагается (с учетом рассмотренного выше смысла и содержания элементов структуры):

а) обоснованно изъять какой-либо элемент предложенной структуры или ввести принципиально новый;

б) поменять два или несколько элементов местами в структуре.

Трудно предположить, что сначала надо установить закон, а затем решить, что же мы исследуем. Или: сначала решить задачу, а затем установить закон, на основе которого она должна решаться. Не менее трудно понять, как решать задачу, если неизвестен закон, описывающий рассматриваемый в ней процесс.

Из проведенного рассмотрения (отраженного также в работах [35, 40, 41]) видно, что структура научно-познавательной деятельности состоит из трех блоков, которым соответствуют требования Федерального государственного стандарта общего образования [24, С.15] в отношении компетенций и компетентностей, являющихся компонентами научно-познавательной компетентности:

• формирование понятийно обеспеченного языка научного описания изучаемого явления (этому блоку структуры рис. 3.2, состоящему из первых трех ее элементов, можно присвоить наименование «Язык»);

• установление интересующих исследователя причинно-следственных связей между явлениями (блок «Закон» – от «Измерения явления или свойства» до «Формулирования закона» в структуре рис. 3.2);

• решение задач, представляющих интерес для субъекта исследования (блок «Задача» – последние три элемента структуры рис. 3.2).

Таким образом, описанная выше структура научно-познавательной деятельности может быть схематически представлена в обобщенном («свернутом») виде как