Читать книгу «Хамса. Пятерица» онлайн полностью📖 — Ахуна Андижани — MyBook.
image

Элементарные частицы

Внутренняя структура элементарных частиц неизвестна, даже пока неясно, существует ли она. Тем не менее хорошо известно, что существуют устойчивые и неустойчивые элементарные частицы. Время жизни неустойчивых частиц порядка 10-23÷ 10-6 секунд. За такое мизерное время они в обычных условиях распадаются на устойчивые с выделением энергии. В настоящее время стабильными считаются девять видов элементарных частиц. Это протон, электрон, мюонное и электронное нейтрино, их античастицы и фотон.

Устойчивые частицы могут перейти в разряд неустойчивых, но для этого необходимо достаточно мощное воздействие внешней среды. Чтобы обеспечить такую достаточную мощность воздействия, физики применяют различные ускорители.

На примере элементарных частиц хорошо иллюстрируется относительность понятия устойчивости по времени. Свободный нейтрон по сравнению с неустойчивыми частицами (время жизни 10-23÷ 10-6 сек.) считается устойчивым, а по сравнению со стабильными частицами считается неустойчивым, так как время его жизни ограничено (t = 12 ∙ мин).

Кроме того, нейтрон, сам по себе являясь неустойчивой частицей для явлений с характерным временем, превышающим час, взаимодействуя с протоном или протонами, может образовать устойчивое ядро. То есть образовывает динамически устойчивую совокупность элементарных частиц устойчивого атома с огромным, по сравнению с часом, временем полураспада. То есть наличие относительно неустойчивых частиц в системе не предопределяет неустойчивость всей системы.

Атомы

Элементарные частицы (или их какие-либо совокупности), каждая сама по себе стремящаяся к устойчивому состоянию и находящаяся в относительно устойчивых состояниях, взаимодействуя между собой (сталкиваясь, притягиваясь и отталкиваясь), при определённых условиях (например, характеризуемых достаточной плотностью) образуют различные системы элементарных частиц. Неустойчивые системы из-за неуравновешенности каких-либо сил распадаются, и их составляющие частицы в конце концов либо образуют устойчивые системы, либо становятся содержимым таковых. Наиболее простыми устойчивыми системами элементарных частиц являются атомы, в которых вокруг устойчивого ядра – совокупности протонов и нейтронов (удерживаемых сильным взаимодействием), – устойчиво удерживается электростатическими силами соответствующее число электронов.

При этом силы притяжения и отталкивания, действующие между частицами, обеспечивают уравновешенное, устойчивое состояние этой системы.

Атомное ядро

Силы ядерного притяжения между протонами преобладают над электростатическими силами отталкивания только на малых расстояниях (меньше 2,5 ∙ 10-13 см). Поэтому ядра с большим числом (Z) протонов неустойчивы. Для всех ядер с Z = 82 (свинец) ядро оказывается только относительно устойчивым в земных условиях и претерпевает α-распад с различным периодом полураспада. При Z, равном 92 (уран), период полураспада 4,5 ∙ 109 лет сравним с возрастом Земли, который считается примерно равным 5 млрд лет. При Z, превышающем 92, период полураспада уже настолько мал, что в естественных условиях их уже не находят. Физики сумели получить тяжёлые атомы с Z вплоть до 105, но их создание требует специфических (и дорогих) условий.

Неустойчивыми могут быть и атомные ядра с малым Z. Дело в том, что в атомных ядрах, кроме протонов, большую роль играют и нейтроны. При этом энергия связи нейтрона в ядре настолько уменьшает его массу, что последняя оказывается меньше массы протона в соответствующей ситуации. А масса протона является наименьшей из возможных у нуклонов. Если масса атомного ядра благодаря его энергии связи оказывается меньше массы любой возможной комбинации продуктов распада, то такое ядро будет устойчивым по закону сохранения энергии. В этом причина того, что лишь определённые изотопы оказываются стабильными, а все остальные радиоактивными. К примеру, водород и дейтерий стабильны, а тритий (с ядром, содержащим один протон и два нейтрона, то есть Z = 1, A = 3) не стабилен. Период полураспада трития в стандартных условиях 12 лет, и распадается он с образованием гелия.

Электронные оболочки

Удерживаемые атомным ядром электроны находятся в различных состояниях – на определённых «орбитах»-оболочках. На каждой оболочке может находиться ограниченное число электронов. Сами оболочки-уровни строго определяются атомным ядром и тем обстоятельством, что электрон, как и устойчивая волна, может существовать в ограниченном пространстве только в том случае, когда в этом пространстве укладывается целое количество волн. На каждой оболочке при соответствующем атомном ядре энергия электрона строго определена.

Отдельный атом находится в наиболее устойчивом или, как говорят физики, в основном состоянии, когда электронами заполнены всевозможные (при данном количестве электронов) состоянии с наименьшей энергией.

В определённых условиях – при достаточно сильном воздействии окружающей среды (подводе энергии из окружающей среды) – атом выводится из основного состояния, но быстро возвращается в основное состояние, испустив лишнюю энергию в виде γ-кванта. Энергия γ-кванта, или фотона, при этом соответствует разности уровня энергий покинутого состояния приобретённого.

При очень большом воздействии окружающей среды какой-либо электрон (находившийся в наименее устойчивом состоянии с относительно большим уровнем энергии) может получить энергию, позволяющую ему покинуть атом. Минимальная такая энергия называется ионизационным потенциалом рассматриваемого атома. На фигуре 5 приведены уровни энергий отдельного атома водорода. В газообразном водороде при комнатной температуре практически все атомы находятся в основном состоянии, а электроны находятся на оболочке с уровнем энергии – 13,6 эв. Если этот газ нагреть достаточно сильно, то некоторые атомы, сталкиваясь между собой, уже смогут приобрести кинетическую энергию, превышающую 10,2 эв. Электрон перейдёт с низшего уровня на более высокие. Наличие вакантного места на оболочке первого уровня заставит электрон, испустив соответствующий фотон или фотоны, вернуться в прежнее состояние.

Фиг. 5


При переходе с высокого уровня на первый в атоме водорода излучается ультрафиолетовый свет, при переходе с высокого уровня на второй – излучается фотон видимого спектра.

Если при столкновении кинетическая энергия превысит 13,6 эв., то электрон может получить энергию, позволяющую ему покинуть протон – ядро водорода, то есть 13,6 эв., – ионизационный потенциал электрона.

Как было сказано выше, количество электронов, способных находиться на определённой оболочке, ограничено.

Количество электронов на внешней оболочке атома, находящегося в основном состоянии (и соответствующее количество электронов, недостающих до полной заполненности внешней оболочки) определяет основные химические свойства атомов (валентность, ионизационные потенциалы и т. д.).

Этим обусловлена периодичность свойств атомов, при возрастании атомного номера определяющая таблицу Менделеева. Замыкают каждый период атомы с полностью укомплектованными оболочками – инертные газы.

Чтобы вывести стабильный, отдельный атом из устойчивого состояния, необходимо внешнее достаточно мощное воздействие, имеющее энергию не меньше, чем энергия ионизации этого атома. На фигуре 6 приведён график зависимости энергии ионизации от атомного номера.


Фиг. 6. Ионизационные потенциалы атомов


На графике видно, что с увеличением номера периода средняя энергия ионизации атомов периода уменьшается. То есть с увеличением номера периода устойчивость атомов – необходимая энергия воздействия для ионизации – сравнительно падает. Напомним, что атомное ядро при увеличении Z также становится менее устойчивым. Этими обстоятельствами предопределяется сравнительно большая распространённость «лёгких» атомов как на Земле, так и в исследованной Вселенной.

Ионы и устойчивость

На фигуре 6 видно, что ионизационный потенциал лития равен 5,4 эв. То есть для того, чтобы наименьше связанный электрон (электрон внешней оболочки) лития покинул систему атома, достаточно энергии в 5,4 эв. Такая энергия вполне достижима при давлении 1 атм. и определённой температуре. Для сравнения напомним, что электрон в атоме водорода возбуждается (переходит с первой оболочки на вторую) при получении энергии в 10,2 эв.

Второй ионизационный потенциал лития (соответствующий освобождению второго электрона – одного из обитателей внутренней оболочки) равен 75,6 эв., что примерно в три раза превышает ионизационный потенциал самого инертного (устойчивого) атома среди всех элементов атома гелия (24,6 эв.).

Приведённый пример иллюстрирует тот факт, что в определённых условиях (при наличии только лития и его ионов определённой температуры, плотности и т. д.) некоторые химически неравновесные состояния могут быть – по общему определению устойчивости – более устойчивы, чем химически равновесные состояния. Так как литий в ионизированном состоянии (в определённых условиях) выдерживает, не изменяя своих основных свойств (ионизированность и т. д.) большие воздействия окружающей среды (в указанных условиях), чем литий в равновесном состоянии (с электростатической точки зрения).

В ионизированном состоянии реализуется обобщённо равновесное состояние, в котором уравновешиваются силы отталкивания и притяжения заряженных частиц при довольно высоком уровне механических воздействий окружающей среды.

Благородные газы

В каждом периоде наиболее устойчивыми атомами являются атомы с полностью укомплектованными внешними оболочками – атомы инертных газов.

Это объясняется, во-первых, полной укомплектованностью внешней оболочки – новому кандидату, электрону, нет места в системе – все разрешённые состояния электронов на всех уровнях, вплоть до внешней оболочки, заняты.

Во-вторых, следующая оболочка, где вроде ни одно состояние не занято, достаточно удалена от ядра и электронов внешней оболочки; сил притяжения, удерживающих какую-либо движущуюся частицу, на ней нет. Все внутренние силы полностью уравновешены.

И, в-третьих, электроны внешней оболочки связаны с атомом силой, максимально возможной на этом энергетическом уровне. Положительный заряд совокупности частиц (без электронов внешней оболочки), действующий на внешнюю оболочку, максимален.

Для сравнения: в атомах щелочных металлов (начинающих периоды – лития, натрия, калия) положительный потенциал создаётся только одним зарядом (остальные уже скомпенсированы).

Ионизированный потенциал атомов инертных газов превосходит ионизационный потенциал щелочных металлов не в несколько раз, а меньше из-за того, что электроны внешней оболочки отталкиваются друг от друга.

Согласованность возможных и реализуемых состояний с полностью уравновешенными внутренними силами обуславливает относительно повышенную устойчивость атомов инертных газов, приводит к повышенной интенсивности по отношению к воздействиям внешней среды и к обособленности. Только достаточно тяжёлые инертные атомы образуют некоторые соединения.

Лабильность

Изменение количества электронов, находящихся на внешней оболочке атомов периода с возрастанием атомного номера, обуславливает и изменение свойств атомов. С увеличением атомного номера щелочные свойства ослабевают и возрастают кислотные свойства. Замыкают период атомы инертных газов. В середине периодов находятся атомы, способные в некоторых условиях проявлять слабые кислотные, а в некоторых условиях слабые щелочные свойства. Способность проявлять разные свойства достаточно устойчивыми атомами называются их лабильностью.