Читать книгу «Строительство нефтяных и газовых скважин» онлайн полностью📖 — А. С. Новикова — MyBook.
image

§ 20. Долота типа PDC

Новым типом породоразрушающего инструмента являются долота оснащенными резцами PDC. Рис. 52 Изначально область их применения – бурение в мягких породах, разработчики долот успешно проектируют и начинают опробовать долота PDC в средних и твердых породах и даже абразивных. Преимущества долот PDC перед шарошечными долотами:

1. Отсутствие опоры долота;

2. Более высокая механическая скорость проходки;

3. Более высокая стойкость и соответственно проходка на долото по сравнению с шарошечными долотами;

4. При правильном выборе интервала применения долот PDC, значительная их экономическая эффективность по сравнению с шарошечными долотами и долотами истирающего типа.

Рис. 5.10. Долото PDC


Рис. 5.11. Механизм разрушения горной породы различными типами долот.

1 – разрушение зубком шарошки;

Раздавливание и отрыв частиц породы, зубок требует высоких удельных нагрузок для дробления породы сжатием.

2 – разрушение резцом PDC;

PDC резец срезает слой породы. Породы легче разрушаются при боковой нагрузке в связи с анизотропными свойствами горных пород;

3 – разрушение истиранием (алмазосодержащим зубком алмазные долота, ИСМ).


Долота PDC имеют наиболее энергетически эффективную режущую структуру.

Современные резцы PDC используются при бурении от мягких до средне-крепких, абразивных пород. Долота PDC конструируются и изготавливаются индивидуально, в строгом соответствии с требованиями заказчика. [48]

Основные конструктивные параметры долот PDC:

1. Профиль долота;

2. Размер и тип резцов;

3. Плотность установки резцов;

4. Распределение резцов;

5. Распределение режущих усилий;

6. Стабилизирующие устройства;

7. Гидравлика;

8. Система калибрующих резцов.

Профиль долота

Профиль режущей структуры долота выбирается исходя из физико-механических свойств проходимых пород, а также в соответствии с технологическими особенностями бурения (направленное и т. п.).

Размер резцов.

Из большого разнообразия диаметров резцов PDC, имеющихся на рынке, используются 6мм, 9мм, 13мм, 16мм, 19мм и 22мм резцы;

6 мм – резцы – примененяются только в долотах малого диаметра;

9 мм – резцы-применяются в долотах для бурения твёрдых пород там, где ранее использовались долота, армированные натуральными алмазами;

13 мм – резцы-наиболее широко используемый размер, оптимален для бурения средних и средне-твёрдых пород;

16 мм – резцы-используются в тех случаях, когда 13мм резцы, слишком твёрдые породы, а 19мм, – слишком мягкие породы;

19 мм – 22 мм резцы-предназначены для бурения в мягких и средне мягких породах с высокой скоростью проходки. [48]


Профиль долота.


Влияет непосредственно на:

• Стабильность работы долота;

• Управление направлением бурения;

• Плотность посадки резцов;

• Надёжность долота;

• V мex;

• Очистку и охлаждение долота.


Компоненты профиля долота.

• Центр;

• Конус;

• Нос;

• Плечо или наружный конус;

• Наружный диаметр (ODR);

• Калибрующие.


Центр – (геометрический центр долота).

Различается по углу открытия Cone

• Глубокий конус (~90°);

• Мелкий конус (~150°).


Глубокий конус.

Преимущества:

• Высокая стабильность долота;

• Повышенное содержание алмазов.

Недостатки:

• Сложность управления направлением бурения;

• Хуже очистка;

• Снижение агрессивности


Мелкий конус

Преимущества:

• Управляемость направлением бурения;

• улучшение очистки;

• Повышение агрессивности.

Недостатки:

• Снижение стабильности;

• Уменьшение объёма алмазов.


Рис. 5.12. Профили долот PDC


Профиль долот

4 основных типа:

• Плоские;

• Короткая парабола;

• Средняя парабола;

• Длинная парабола.

• Долота с плоским профилем используются для бурения крепких, мало абразивных пород;

• Долота с длинным параболическим профилем предназначены для бурения мягких пород;

Обратный угол резания:

• Угол атаки породы;

• Увеличение его даёт повышение ударной прочности и износостойкости резца;

• Снижение обратного угла повышает Vmex;

• Выбирается в соответствии с условиями бурения с учётом получения максимальной производительности долота.

Больший обратный угол резания соответствует более мягким породам и наоборот.

Величины обратных углов

• 5° – 10° Очень мягкие – глины, сланцы, высокие скорости бурения;

• 15° Универсален, мягкие поды – сланцы;

• 20° Универсален, дольше жизнь резца, абразивные породы;

• 30° Крепкие породы, типично для калибрующих резцов. [94]


Рис. 5.13. Типовые обратные углы резания


Рис. 5.14. Обратный угол резания


Классификация долот PDC

• С твердосплавным вооружением;

• С комбинированным вооружением:

• Твердосплавное вооружение + PDC;

• Для бурения с отбором керна;

• Для зарезки боковых стволов;

• Для наклонно-направленного бурения;

• Для бурения с одновременным расширением ствола скважины (бицентричные долота)

• Ступенчатые.


Рис. 5.15. Типы долот PDC


Рис. 5.16. Характеристика износа сегментов долот PDC


Таблица 11. Классификация долот PDC по коду IADC


Перспективным направлением совершенствования долот PDC, являются долота с матричным корпусом. Матрица изготавливается из композиционных материалов. Металлическая матрица композиционных материалов (спеченный твердый сплав, обладающий высокими противо абразивными, упруго пластичными свойствами и микро твёрдостью) выбирается из условий получения максимальной удельной прочности материала, обеспечения связи между упрочняющими элементами и получения необходимых технологических и эксплуатационных свойств. Она обеспечивает передачу нагрузки на волокна, вносит существенный вклад в модуль упругости и снижает чувствительность к концентраторам напряжений. В качестве матриц используются магний, алюминий, титан, кобальт, никель и их сплавы, стали. [48]

В отличие от долот с одноразовым стальным корпусом, матричные долот подлежат ремонту. Восстановление PDC долота позволяет значительно увеличить его ресурс. Износ PDC долота в основном заключается в абразивном истирании PDC резцов, скалывании их алмазных пластин, а также утрате PDC долотом номинального диаметра и возникновении кольцевых проточек на его корпусе.

§ 21. Бицентричные долота

Бицентричные долота рис 5.17. предназначены для бурения с одновременным расширением ствола скважины, разработаны как альтернатива раздвижным шарошечным расширителям. Область применения – бурение ниже башмака спущенной колонны, диаметром более диаметра колонны. Пилот центрует долото по оси скважины, расширитель расширяет и формирует увеличенный ствол скважины. [48] Разработаны в СССР в г. Киеве. Впервые успешно применены и доработаны с участием автора в Арчединском УБР П/О Прикаспийбурнефть, при бурении скважин под хвостовик на Тенгизском нефтяном месторождении. Были оснащены твердосплавным вооружением, получен диаметр 240 мм. В дальнейшем компании Smith bits, Bakker, Reed и др. западные компании значительно улучшили показатели бицентричных долот, за счет использования резцов PDC.

Рис. 5.17. Бицентричное долото


§ 22. Описание износа шарошечных долот

Код IАDC является универсальным и при наличии большого количества производителей всегда можно подобрать аналог долота любого производителя. Зная код износа по коду IАDC, можно оперативно подобрать замену долота, что снизит риск простоя (Табл. 12). В России износ долота определяется по коду ВНИИБТ обозначается, где В – износ вооружения, %; П – износ опоры; Д – износ по диаметру, К – количество заклиненных шарошек. 215,9МСЗВ-04 В2П2Д3(к-1).

Результаты работы долота заносятся в карточку работы долот: по горизонтам, под каждую колонну (т. е. по диаметрам), по вооружению, в целом по скважине, в целом по буровому предприятию.

Зарубежные долота описываются более детально, для чего разработана методика оценки износа долота.


Рис. 5.18. Код IADC стандартная форма описания долот


Группа «Т» – режущая структура долота

1 – Внутренние венцы (I) – описывается средний износ резцов, расположенных внутри 2/3 радиуса долота.

2 – Наружные венцы – описывается средний износ резцов, расположенных на наружной 1/3 радиуса долота

3 – Характеристика износа режущей структуры долота

4. Местоположение (L)

Буквенный или цифровой код используются, чтобы указать местоположение на режущей поверхности долота, где отмечен характерный износ

5. Подшипниковые узлы(B)

Это графа используется для оценки и описания только для шарошечных долот. В случаях работы с алмазными долотами поставьте букву «Х».

6. Потеря диаметра долота (G)

8. Причина прекращения отработки долота ®

Восьмая графа используется для записи причины прекращения отработки долота. [43]


Таблица 12. Характеристики износа шарошечных долот.


Таблица 13. Коды операций производимых работ по скважине


§ 23. Алмазные бурильные головки и бурильные головки ИСМ

Алмазные бурильные головки, как по своим конструктивным особенностям, так и по характеру воздействия на породу и столбик керна, в наибольшей степени подходит для колонкового бурения. По конструкции оси очень просты. Недостаток – высокая стоимость алмазов. По технологии изготовления имеют много общего с алмазными залежами. Поэтому могут классифицироваться на два класса – с природными и синтетическими алмазами и те же разновидности – радиальную, радиально-ступенчатую и спиральную.

С природными алмазами – три разновидности радиальные, однослойные ступенчатые и импрегнированные. КР 212 / 80 СТ2. К – бурголовка колонковая, Р – радиальная разновидность, 212/80 – наружный диаметр головки и керноприемника.

С синтетическими алмазами – две разновидности однослойные и импрегнированные ступенчатые. Бурильные головки ИСМ вооруженные вставками со сверхтвердым материалом; славутич выпускается одной разновидности МС – для бурения с отбором керна в среднемягких породах (М, МС, С). [9]

§ 24. Устройства для отбора керна

Одной из главных задач при бурении скважин является получение информации о породах залегающих на глубинах, перспективных по наличию углеводородов, а в параметрических скважинах все вскрываемые скважиной породы представляют интерес, как для исследователей, так и для практического применения. Керноприемное устройство предназначено для приема, отрыва от массива горных пород и сохранения керна в процессе бурения и во время его транспортирования по скважине и далее вплоть до его извлечения для исследований Керноприемные устройства, согласно ГОСТ 21949–76, должны выполняться в следующих разновидностях: 1) Р – для роторного бурения; 2) Т1 – для турбинного бурения со съемным керноприемником; 3) Т2 – для турбинного бурения без съемного керноприемника. Керноприемное устройство Р2 1-го типа производится в единственной модификации – в виде снаряда Недра, в одной модели КДПМ-190 / 80 – для отбора керна диаметром 80 мм. Керноприемные устройства 2 типа предназначены для отбора керна из средне – и малопористых, перемежающихся пород, слабо размываемых промывочной жидкостью, мало разрушаемых. Они выполняются с несъемным, изолированным от потоков промывочной жидкости керноприемником и применяются при низкооборотном бурении.

Для этой цели используются различные керноотборные устройства (Рис. 61) в сочетании с различными типами бурголовок. Бурголовки подбираются в зависимости от буримости предполагаемых пород, в которых предстоит отбирать керн.

Керноприемные устройства типа УКР и УК предназначены для бурения с отбором керна в различных физико-механическим свойствам горных породах и условиях бурения.

Предлагаемые керноприемные устройства по технико-экономическим показателям не уступают зарубежным аналогам. [9]

Керноприемные устройства могут использоваться в одно и многосекционной сборке при бурении на различных глубинах, при любых реальных температурах и режимах бурения. Усовершенствованные устройства типа УК разработаны на базе широкоизвестных устройств типа УКР (Кембрий, Недра, Силур, Табл. 14), прошли широкую промышленную апробацию, подтвердившую их высокие эксплуатационные качества, основной показатель устройств – процент выноса керна, составляет около 100.


Рис. 5.19. Керноотборочный снаряд


Таблица 14. Типоразмеры устройств для отбора керна Российских производителей [7]


Современные керноприемные устройства выпускаются трех типов:

• Для отбора керна из массива плотных пород;

• Для отбора керна в трещиноватых, перемятых породах;

• Для отбора керна в сыпучих породах.

Керноприемное устройство первого типа – снаряд «Недра», где грунтоноска вращается с корпусом, жидкость отводится от керноприемника при помощи шара (КД11М190/80).

Керноприемное устройство второго типа имеет вращающуюся независимо от корпуса грунтоноску (СК164/80).

Керноприемное устройство третьего типа – обеспечивает герметизацию керна за счет эластичного керноприемника.

В основном используется снаряд «Недра» и «Кембрий», он может быть собран из нескольких секций по 7 метров. Модификация «Недра» СКУ122/52, СКУ138/67, СКУ203/100.

Керноприемные устройства для турбинного бурения выпускают в четырех моделях: КТДЗ-240; КТДЧС-240; КТДЧС-195 и КТДЧС-172. КТД – колонковое турбинное долото. При турбинном бурении формирование и хранение керна затруднено, его диаметр мал, процент выноса низок, поэтому при отборе керна обычно переходят на роторный способ. [9]

Колонковые снаряды, выпускаемые зарубежными производителями

За рубежом широко применяют эффективные устройства фирм «Нортон кристенсен», «ДБС», «Диамнт Борт». Например, в мировой практике широко известно керноотборное устройство с несъемным керноприемником серии 250П (рисунок 5.20), с помощью которого успешно отбирали керн на ряде нефтяных месторождений в России. Устройство состоит из предохранительного переводника 1 с крупной ленточной резьбой 2 для отсоединения в случае прихвата корпуса 6. Керноприемник 8, имеющий шариковый обратный клапан 5, подвешен на шаровой опоре 3. Корпус имеет два стабилизатора 4 и 7. Нижняя часть имеет кернорватель 9. Разрушение породы производится бурильной головкой 10. Как видно из рисунка 62 керноотборное устройство 250П близко по конструкции к устройству серии «Недра». Сообщается, что после некоторой модернизации с помощью 250П возможен отбор иентированного керна. Фирма «Нортон Кристенсен» выпускает также керноотборное устройство серии 300 со съемным керноприемником (рисунок 5.21). Устройство включает грибообразную головку 1 для захвата и подъема керноприемника 5. Керноприемник подвешен в корпусе 4 на шаровой подвеске 2. Верхняя часть керноотборника снабжена дренажным шаровым клапаном 3. В устройстве имеется так же кернорватель 6 и бурильная головка 7. Фирмой ДБС, разработано керноотборное устройство для отбора керна из высокопористых нефтенасыщенных пород (рисунок 64). Специалисты фирмы считают, что без изоляции керна, при доступе к нему бурового раствора на водной основе, а также при извлечении керна из керноприемной трубы, в воздух испаряется до 50 % нефти, содержащийся в порах керна. А это приводит к тому, что в геологических материалах появляется неверная информация о продуктивности изучаемого нефтеносного пласта. Во время рейса с отбором керна происходит отток из керна нефти и воды в губчатый пористый материал 10, находящийся в алюминиевой втулке 9. При подъеме керноотборного устройства, с забоя до устья, происходит падение давления от пластового до атмосферного, при этом газ, находящийся в образце породы, увеличивается в объеме, стремясь вытолкнуть нефть и воду в губчатый материал. [26]


Рис. 5.20. Керноотборное устройство с несменным керноприемником серии 250П


Рис. 5.21. Керноотборное устройство серии 300 со съемным керноприемником


Колонковый снаряд наклонно-направленных скважин используются для отбора керна в наклонных скважинах (угол наклона более 45 градусов). Он отличается от стандартного снаряда конструкцией. Опора керноприемника может удерживать его в нормальном рабочем состоянии при больших углах.

Керноприемник центрируется в корпусе и не вращаться вместе с корпусом.

Колонковый снаряд с наружным выпускным каналом отличается от стандартного снаряда тем, что специальное соединение выпускного канала устанавливается между разъединительным переходником и вертлюгом.

При колонковом бурении внешний выпускной канал позволяет выпускать буровой раствор из керноприемника в кольцевое пространство, тем самым уменьшая сопротивление вхождению керна в керноприемник.





1
...
...
14