Что нового можно открыть в современной математике. Кажется, что здесь нет никаких белых пятен. К осмыслению элементарной математики можно прийти тогда, когда в этом возникнет острая необходимость. Какой-нибудь вопрос, ответ на который не найти, может заставить искать его первоначальное появление. Если оно найдено и готово к использованию, то поиск заканчивается. Не всегда это удается. Чаще приходится ограничиться приближенными сведениями, которых бывает недостаточно. Это обстоятельство и является причиной самостоятельного исследования этого вопроса, которое может привести к неожиданным результатам. Например, если ищется доказательство Великой теоремы Ферма, то без исследования теории чисел и происхождения самого понятия числа не обойтись. Но в этой области белых пятен не сосчитать, поскольку уже несколько поколений людей не могут найти элементарного доказательства этой простой теоремы.
Другим примером является вопрос о формировании в нашем сознании понятия чисел и их видов. Здесь приходится искать сведения об этих вопросах вплоть до времен Пифагора, ибо он дал первое определение числа и открыл несоизмеримость диагонали и стороны квадрата. Определение иррациональных чисел можно найти в многочисленных учебниках элементарной математики, и ни у кого оно не вызывает сомнения. В учебниках доказывается теорема: не существует рационального числа, квадрат которого равен 2 и показывается, что такие числа можно записывать в виде бесконечной непериодической дроби. Именно такое объяснение и держится в нашем сознании. И вроде все здесь ясно, и доказательство безупречно. Однако, если рассмотреть это доказательство с точки зрения исходного состояния взятого числа, сравниваемого с числами, которые в этом состоянии не находятся, то законность доказательства становится сомнительной. Если извлечен корень из числа 4, то мы его называем целым числом. Если извлечен корень из 2, то его называем иррациональным числом. Различие устанавливается с помощью зрительного восприятия. Доказательства не требуется, хотя мы над обоими числами совершили одну и ту же операцию. С точки зрения совершенной над этими числами операции их можно отнести к одному классу.
Да и почему называем их числами? Правильно ли мы понимаем, что такое число? Неужели его нельзя определить? Может быть, оно уже определено? Почему даны точные определения видов чисел, а само число не определено или вводится как первичное понятие, как и множество. Эти и сопутствующие им вопросы, ответы на которые мною не найдены, рассмотрены в работе с точки зрения их исторического возникновения и развития. Работа не является учебным пособием или обзором состояния математики в рассматриваемых областях. Это точка зрения автора, с которой читатель вправе согласиться или нет. Буду признателен за любые замечания.
Может быть, математики посчитают это обсуждение чушью или бредом, но это не бред одиночки. Попытка моя обсудить эту проблему на международном «Научном форуме dxdy» закончилась провалом. Именно на нем математики оценили мои рассуждения словами «бред, чушь» и т. д. Абсолютно не обижаюсь на специалистов этого форума, ибо мои рассуждения действительно противоречили сложившимся традиционным положениям и даже «очевидным». Не могу не выразить благодарность заслуженным участникам форума под никами: незваный гость, bot, shwedka и др. за их терпение в разъяснении мне математических истин и методов рассуждений в решении проблем.
В поисках ответа на этот вопрос я воспользовался возможностями, предоставляемыми участникам сайта ПРОФЕССИОНАЛЫ. ru. Мною на сайте проведено два интернет-опроса, на которые пришло более 3000 ответов. Привожу один из вопросов и отрывок дискуссии:
Каким общим словом можно назвать атрибуты, использованные для счета с древних времен до наших дней: пальцы рук и ног, части тела, камешки, веревки с узелками, палочки, засечки, черточки, абаки, счеты, электроны?
Автор: Yarkin Nazirov 06 ноября в 22: 20
Опора. Все перечисленное – это удобные опоры для счета.
10 ноября 2015 в 23: 00 #
Yarkin Nazirov
Интересно. Вспомнил сопромат.
8 января 2016 в 20: 12 #
Николай Мариенко
Все вышеперечисленное очень удобно в арифметике, это самое лучшее, что придумали для ребенка.
9 ноября 2015 в 19: 45 #
Алексей Иванов
Что же вы так рискованно аж двух точек опоры себя лишили?
10 ноября 2015 в 23: 01 #
Yarkin Nazirov
Поясните.
14 ноября 2015 в 10: 40 #
виктор м
Знаете, Yarkin, а ведь так или иначе мы считаем именно ШТУКИ. Просто, когда нужно определить длину, объём, вес и т. д., мы вводим некую меру: аршин, фут, фунт, килограмм, милю… А дальше считаем ШТУКИ этих самых лье и пудов.
15 ноября 2015 в 17: 36 #
Yarkin Nazirov
Согласен.
10 ноября 2015 в 16: 37 #
Александр Бирюков
Логарифмическая линейка. (Типа калькулятор).
10 ноября 2015 в 23: 02 #
Yarkin Nazirov
Точно. Для подсчета логарифмов.
10 ноября 2015 в 17: 57 #
Ирина Лозинская
А электроны тут при чем?
10 ноября 2015 в 23: 03 #
Yarkin Nazirov
А как считает ЭВМ в двоичной системе?
10 ноября 2015 в 23: 34 #
Ирина Лозинская
Не специалист, не знаю!!
11 ноября 2015 в 23: 11 #
Yarkin Nazirov
Электроны переносят положительный заряд «1» и отрицательный заряд «0». Например, 101 = это «5» в двоичной системе счисления.
11 ноября 2015 в 23: 35 #
Ирина Лозинская
Благодарю за разъяснение!
12 ноября 2015 в 21: 26 #
Yarkin Nazirov
Рад стараться.
10 ноября 2015 в 18: 05 #
Юрий Сахаров
«Лишь то, что суть имеет, я посчитать сумею». Значит, все эти атрибуты можно назвать сущностями.
10 ноября 2015 в 23: 07 #
Yarkin Nazirov
Эти атрибуты использовали для счета сущностей (вещей).
11 ноября 2015 в 08: 32 #
Валерий Петров
атрибуты можно назвать сущностями
Удачное сравнение, Юрий!
Сущность не обязательно проявляется в «натуральном» виде как физический объект. А вот в человеческом мозге сущность проявляется (вернее, отражается) как некий мысле-образ или одним словом – СИМВОЛ. Если иметь в виду какое-то ЧИСЛО сущностей, то мысленно можно представить СЕБЕ это число в «цифровом изображении». При этом сам символ количества сущностей графически можно представить различными способами, например: показать шесть пальцев или нарисовать палочки VI… или нарисовать цифру 6… или как на кубике – шестью точками… или на счётах отложить шесть костяшек… и т. п.
Все эти «показы» можно назвать моделями числа шесть и производить с ними реальные арифметические действия не только «в уме», но и наглядно, например, для обучения детей счёту!
Если людей тоже считать сущностями, то числами можно «символизировать» только их однородное количество, чтобы отвечать на вопрос: СКОЛЬКО (таких)? или СКОЛЬКО (эдаких)? А конкретная сущность человека в голове другого человека отражается как некий мысле-образ, который тоже можно назвать одним словом – СИМВОЛ. Но тогда такой символ моделируется графически в виде портрета конкретного человека = сущности. И такой символ будет отвечать уже на другой вопрос: «КТО именно?», а не «Сколько его?»
И если художник умело передаёт свой мысле-образ как СИМВОЛ некой СУЩНОСТИ – то другие люди (зрители) хорошо понимают, КТО именно изображён художником!
11 ноября 2015 в 08: 40 #
Валерий Петров
А вот налоговики рисовать вообще не умеют, поэтому просто присваивают людям цифровой символ, т. н. ИНН, и называют людей (по их сущности) – злостными налогоплательщиками!
12 ноября 2015 в 21: 33 #
Yarkin Nazirov
Слово «злостное» относится к неплательщикам. Они приняли на вооружение опыт монголов. У них были числовики (налоговики), а дань (налог) они собирали с чисел (налогоплательщиков).
14 ноября 2015 в 17: 17 #
Валерий Петров
Прана служит средой для передачи чувств.
А можно вопрос?
Другие дни недели чем служат «для передачи чувств»?
И насчёт воздуха тоже не совсем понятно. Можно ведь дышать тихонько (без звуков)…
14 ноября 2015 в 17: 20 #
Валерий Петров
А передавать мысли на расстоянии можно даже по электронной почте – быстрее, чем звуками из телевизора.
14 ноября 2015 в 19: 31 #
Юрий Сахаров
Очень много голословных, недоказуемых утверждений.
14 ноября 2015 в 21: 37 #
Yarkin Nazirov
Люди, которые таят мысли, проникнутые ненавистью.
А я свои мысли вынес на обсуждение, а потому завоевал сперва неуважение Новожилова, а теперь и В. Петров начал отвечать колкостями.
15 ноября 2015 в 17: 32 #
Yarkin Nazirov
Опять взаимодействие тел.
15 ноября 2015 в 22: 48 #
Валерий Петров
Есть такая наука – «физика твёрдых тел». Вот там это взаимодействие ТЕЛ и рассматривается. Ещё есть наука – «гидродинамика», которая рассматривает не твёрдые тела, а жидкости. Про газы тоже есть своя наука, и в ней тоже есть свои термины и понятия.
Но все расчёты выполняются математическими методами, а не «взаимодействием тел математиков». А Джульетта цитирует фразы из мистики, которую никто за науку не признаёт, но при этом приводит (очень некорректно) примеры из техники (про радиосвязь, например).
Мысли – это не вещи и не тела, а их «отражение» в голове людей как мысле-образы этих вещей или тел. А чтобы передать СВОИ мысли другому человеку, нужно изложить эти мысли в виде вполне определённой ИНФОРМАЦИИ. «Мгновенно» мысли не передаются, они либо возникают в голове человека, либо НЕ возникают!
18 ноября 2015 в 23: 35 #
Джульетта Бзарова
Среда тут не день недели, а окружающая среда. Прана – в йоге, традиционной индийской медицине, эзотерике – представление о жизненной энергии, жизнь. В йоге считается, что прана пронизывает всю вселенную, хотя и невидима для глаз.
Йоги считают, что прана с каждым вдохом наполняет праническое тело человека (или животного) по системе из более 72000 нади, мельчайших каналов. Кшурика-упанишада и Хатха-йога-прадипика называют 72000 нади; Прапанчасара-тантра и Горакша-Паддхати – 300000; Шива-самхита – 350000. Нади, переплетаясь, образуют многочисленные энергетические центры – чакры. Выделяют десять главных нади, три из которых считаются наиболее важными: ида, пингала и сушумна. Эти три канала (нади), по представлениям йогов, располагаются непосредственно вдоль позвоночника и играют важную роль в жизни человека, также они соединяют шесть главных чакр (от муладхары до аджни). Нужно заметить, что Сушумна пролегает от муладхары до сахасрары и является каналом для огня кундалини.
Прана приравнивается к понятию энергии ци в даосизме и традиционной китайской медицине [источник не указан 431 день]. В тибетской медицине используется одновременно два понятия – и прана, и ци.
На этой странице вы можете прочитать онлайн книгу «Возврат к Пифагору», автора Яркин Назыров. Данная книга имеет возрастное ограничение 12+, относится к жанру «Научно-популярная литература». Произведение затрагивает такие темы, как «точка зрения», «научный поиск». Книга «Возврат к Пифагору» была написана в 2019 и издана в 2019 году. Приятного чтения!
О проекте
О подписке