Читать книгу «О принципе противоречия у Аристотеля. Критическое исследование» онлайн полностью📖 — Яна Лукасевича — MyBook.
image

6. Такова внешняя, видимая сторона происходящего. На самом деле под этим кроется нечто гораздо большее, а именно, попытка переосмысления границ человеческого мышления. Открытие неевклидовых геометрий, сделанное в первой половине XIX века К.Ф. Гауссом, Н.И. Лобачевским и Я. Бояйи, стало событием, которое повергло в смятение многие великие умы. Вплоть до XIX века никто не сомневался, что евклидова геометрия описывает единственно возможный реальный физический мир, и вдруг – революция в области человеческого сознания, приведшая к полному пересмотру научных представлений о геометрии Вселенной. Можно утверждать, что принцип противоречия Аристотеля стал для Лукасевича тем же самым, что пятый постулат геометрии Евклида о параллельности[32], отвергнутый вышеупомянутыми учеными. Вот как об этом пишет Лукасевич во вступлении к своей книге: «…действительно ли, из всех [принципов] этот принцип является краеугольным камнем всей нашей логики, или его можно преобразовать и даже убрать, создав систему неаристотелевой логики подобно тому, как посредством преобразования аксиомы о параллельных, была создана система неевклидовой геометрии». Таким образом, Лукасевич покушается ни много, ни мало, а на святое святых – на саму логику.

Примечательно, что Лукасевич был не единственным человеком, кого потрясло открытие неевклидовой геометрии и подвигло на создание неаристотелевой логики. Одновременно с книгой Лукасевича выходит статья казанского философа, психолога и логика Н.А. Васильева [Васильев 1910], в которой говорится о «совершенно различной логике» на основе нового деления суждений “по качеству” – утвердительные, отрицательные и индифферентные. Последнее позволяет Васильеву рассматривать суждения вида «x есть P и x не есть P». Как следует из книги В.А. Бажанова о творчестве Н.А. Васильева, уже во второй половине 1910 г. Васильев вводит понятие воображаемой логики, развивает концепцию множественности логических систем и распространяет критику основных законов логики на закон противоречия (см. [Бажанов 2009: 124]). Этому посвящены последующие работы Васильева[33]. Как и у Лукасевича, мы находим: «Неаристотелева логика есть логика без закона противоречия. Здесь не лишним будет добавить, что именно неевклидова геометрия и послужила нам образцом для построения неаристотелевой логики» [Васильев 1912/1989: 54][34]. Одновременно с Лукасевичем и Васильевым построением новой логики под воздействием открытия новой геометрии вдохновился еще один ученый – американский философ, логик, математик, основоположник прагматизма и семиотики Ч. С. Пирс. В журнале “The Monist” опубликованы отрывки из писем Пирса о занятиях неаристотелевой логикой. В его письме есть такие слова: «… я осмысливал ситуацию, когда допускается, что законы логики отличны от тех, которые мы знаем. Это была своего рода неаристотелева логика в том же смысле, в каком мы говорим о неевклидовой геометрии» (см. [Carus 1910a: 45])[35].

Так революция в геометрии произвела революцию в логическом мышлении.

7. Вторым событием, поразившим современников, был кризис в основаниях математики, продолжающийся до сих пор и наиболее ярко выразившийся в парадоксе Рассела (1902 год). Лукасевич подробно рассматривает его в XVIII главе под названием «Принцип противоречия и конструкции разума». Стандартная формулировка этого парадокса выглядит так. Пусть K – множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то по определению K оно не должно быть элементом K – противоречие. Если нет – то по определению K оно должно быть элементом K – вновь противоречие. Таким образом, в этой конструкции разума мы получаем, что доказуемы оба высказывания (KK) и – (KK), а следовательно, и их конъюнкция. Тогда доказуема произвольная формула B (см. выше). Хотя Лукасевич и говорит здесь, что он не будет пытаться решить эту проблему, но, тем не менее, отмечает, что «у нас есть выбор: либо не использовать принцип противоречия, либо отбросить принцип исключенного третьего[36]». Что касается принципа исключенного третьего, то при формулировке парадокса Рассела без него можно обойтись (см. примечание 2 к гл. XVIII), а вот не применение или ограничение принципа противоречия в самой теории множеств выливается в построение паранепротиворечивой теории множеств (см. [Brady 1989]).

Спустя более полувека после публикации этого парадокса в книге [Френкель и Бар-Хиллел 1966: 18], ставшей классикой, подчеркивается: «С самого начала следует уяснить, что в традиционной трактовке логики и математики не было решительно ничего, что могло бы служить в качестве основы для устранения антиномии Рассела. ‹…› Некоторый отход от привычных способов мышления явно необходим, хотя место этого отхода заранее не ясно». Можно только догадываться, что испытывал Лукасевич, поглощенный мыслью о построении новой логики, когда столкнулся с очень простой, но явно противоречивой конструкцией разума в виде парадокса Рассела.

Обнаружение противоречий в «области априорных конструкций сознания», а также идея Мейнонга[37] о противоречивых, т. е. невозможных объектах типа «круглый квадрат», для которых принцип противоречия не имеет места (1907 г.), несомненно вдохновляют Лукасевича на критику принципа противоречия. С пафосом он обвиняет в противоречиях самого Аристотеля, погруженного в волны противоречия, «которые захлестывают, кажется, весь мир!» (гл. XIII). Последние слова весьма примечательны: если мир таков, то какой должна быть логика в этом мире? Заметим, что у Лукасевича в сильнейшей степени развито чувство соответствия между онтологией и логикой, индетерминистская концепция мира привела его в дальнейшем к «индерменистской» (трехзначной) логике.

8. Возникает вопрос, почему, несмотря на дерзкий характер книги, революция в логике так и не состоялась? Как это ни странно, но Лукасевич почувствовал, что объект, исходный материал, основание переворота, т. е. сам принцип противоречия оказался слишком сложным для этой цели[38]. Показательно, что в ходе написания книги отрицательное отношение Лукасевича к принципу противоречия постепенно смягчается и критика направляется не столько на принцип противоречия, сколько на его абсолютизацию Аристотелем. Отвергая логическую ценность этого принципа, Лукасевич, тем не менее, считает, что он «имеет важную практически-этическую ценность, будучи единственной защитой против ошибок и лжи и поэтому мы должны его признавать» (курсив наш. – А.К.). Этим неожиданным признанием и заканчивается книга, изобилующая довольно-таки тонкими хитросплетениями аналитической мысли, показавшая высочайшую эрудицию Лукасевича в различных областях философии, логики, математики и сделавшая его знаменитым.

Книга «О принципе противоречия у Аристотеля» оказала значительное влияние на развитие логико-философской мысли в Польше. По словам Я. Воленьского: «Как исторический труд книга обрела громадное признание у всех, кто занимался логикой и метафизикой Аристотеля и был склонен к знакомству с книгой Лукасевича» [Woleński 1987: XLIII]. С. Лесьневский считает книгу Лукасевича одной из самых интересных и оригинальных в известной ему философской литературе [Лесьневский 1913: 2][39]. Однако Лесьневский критикует Лукасевича и сильно расходится во взглядах на существование или не существование противоречивых предметов. Если Лукасевич, следуя Мейнонгу, допускает их, что дает ему основание для отрицания онтологического принципа противоречия, то Лесьневский категоричен: «каждый предмет не заключает в себе противоречия» (с. 54). Как считает Лесьневский, это следует из предложенного им доказательства онтологического принципа противоречия.

В работе [Воленьский 2004: 99] приводится более позднее воспоминание С. Лесьневского (1927 г.): «В 1911 году мне попала в руки книга г. Лукасевича о принципе противоречия у Аристотеля. Из этой книги, которая в свое время оказала значительное влияние на интеллектуальное развитие ряда польских “философов” и “философствующих” ученых моего поколения, а для меня лично оказалась откровением во многих отношениях, я впервые узнал о существовании “символической логики” м-ра Бертрана Рассела и его “антиномии”, связанной с классом классов, не являющихся собственными элементами». Стоит также отметить, что во время написания книги у Лукасевича еще не было четкого разделения логики от металогики, но в своем учебнике по математической логике он указывает на исключительную значимость металогического «принципа непротиворечивости»[40] для самой логики [Łukasiewicz 1929/1963: 67-68].

Надо сказать, что в дальнейшем отношение Лукасевича к принципу противоречия постоянно изменяется, это наполняет его жизнь неким драматизмом и влияет на развитие логических взглядов.

Теперь мы подходим к главному научному открытию Лукасевича – созданию первой в мире системы трехзначной логики, которая имеет прямое отношение к статусу законов противоречия и исключенного третьего. Что касается иногда обсуждаемого вопроса о возможности появления многозначной логики в книге «О принципе противоречия у Аристотеля», то мы констатируем, что для этого нет никаких оснований. Напротив, Лукасевич в гл. IV однозначно говорит: «…нельзя принять, что существуют постепенные различия в истинности и ложности […]. Разве, что пришлось бы изменить дефиницию истинного суждения, желая признать существование более или менее истинных суждений». Однако развитие многозначной логики, инициированное чуть позже самим Лукасевичем, пошло именно по этому пути[41].

9. Итоги своей работы Лукасевич подвел в прощальной лекции 7 марта 1918 г.: «В 1910 г. я издал книгу о принципе противоречия у Аристотеля, в которой пытался показать, что этот принцип не так очевиден, каким считается. Уже тогда я стремился создать не-аристотелевскую логику, но безуспешно» [Лукасевич 2012a: 211]. А в самом начале речи Лукасевич говорит о принуждении, которое «началось с момента возникновения логики Аристотеля и геометрии Эвклида», и продолжает: «Я доказывал, что кроме истинных и ложных предложений существуют возможные предложения, которым соответствует объективная возможность как нечто третье наряду с бытием и небытием. Так возникла система трехзначной логики, которую я подробно разработал прошлым летом. Эта система сама по себе так же связна и последовательна, как и логика Аристотеля, а богатством законов и формул намного ее превышает»[42].

Обратим внимание на то, что здесь ничего не сказано об опровержении принципа противоречия. К этому вопросу Лукасевич вынужден будет вернуться через два года в статье, где впервые будет сформулирована трехзначная логика (см. [Лукасевич 2012b]). Самым очевидным образом в этой логике не проходят ни принцип противоречия, ни принцип исключенного третьего, поскольку при приписывании переменной a истинностного значения «возможность», промежуточного между «истиной» и «ложью» – эти принципы принимают значение «возможность», а не «истина». Поэтому Лукасевич называет их всего лишь «возможными». Finis.

10. Необычность ситуации состоит в том, что впервые в мире построена трехзначная логика (обозначим ее посредством Ł3), в которой опровергнуты два главных «основных законов мышления» (поскольку они не являются истинными!), и Лукасевич это никак не комментирует, хотя прошло всего десять лет со времени публикации его книги «О принципе противоречия у Аристотеля».[43] Кстати, после «Прощальной лекции» Лукасевич больше нигде не вспоминает о своей первой книге: ни в статьях по истории логики, ни в своей знаменитой книге об аристотелевской силлогистике [Лукасевич 1959]. Можно подумать, что Лукасевич отказался вести провозглашенную им борьбу «за освобождение человеческого духа» от логического принуждения (этими словами заканчивается «Прощальная лекция»). На самом деле ничего подобного, настоящая борьба только начинается, но что принципиально важно – сместились акценты. Теперь Аристотель не ниспровергается, напротив, у Аристотеля Лукасевич ищет опору для опровержения другого фундаментального логического принципа – принципа бивалентности (см. ниже). Именно этот принцип он ставит на уровень пятого постулата Евклида.

Как пишет Е. Слупецкий в предисловии к собранию избранных работ Лукасевича: «… проблема, которая интересовала Лукасевича больше всего почти всю жизнь и которую он стремился разрешить, прилагая необычайные усилия и страсть – была проблема детерминизма. Она вдохновила его на совершенно изумительную идею многозначных логик» [Slupecki 1970: vii]. Уже ранние, довольно объемистые, работы Лукасевича посвящены анализу понятий причинности [Lukasiewicz 1906] и вероятности [Lukasiewicz 1913]. Однако только в статье «О детерминизме»[44], которая является одной из вершин философствования на эту тему, Лукасевичу удалось дать строгую формулировку и решение глубоких философских проблем, которые возрождаются все вновь и вновь.

11. Лукасевич исходит из знаменитой 9-ой главы трактата Аристотеля «Об истолковании», где впервые формулируется фаталистический аргумент (см. ниже раздел 14) и обсуждается проблема логического статуса высказываний о будущих случайных событиях на примере завтрашнего морского сражения. По всем этим вопросам Аристотель предлагает свое решение[45]. Любопытно, что в начале статьи Лукасевич заявляет по поводу принципа противоречия: «Этого важного принципа, который Аристотель, а за ним многие мыслители считают глубочайшей опорой нашего мышления, мы не будем далее касаться» (курсив наш. – А.К.) Анализируя попытку Аристотеля опровергнуть свой собственный фаталистический аргумент, Лукасевич приходит к выводу, что «Рассуждение Аристотеля подрывает не столько принцип исключенного третьего, сколько основы одного из глубочайших принципов всей нашей логики, который в конечном счете он сам первым и провозгласил, а именно, что каждое предложение является либо истинным, либо ложным,