Типичным примером перехода, о котором идет речь, стала популярность системы Hadoop — конкурирующего аналога системы Google MapReduce с открытым исходным кодом. Hadoop отлично справляется с обработкой больших объемов данных, разбивая их на мелкие фрагменты и выделяя участки для других компьютеров. Она исходит из того, что оборудование может отказать, поэтому создает резервную копию. Система также предполагает, что поступающие данные не упорядочены и не выверены (а по факту и не могут быть выверены до обработки из-за поистине огромного объема). При типичном анализе данных в первую очередь требуется выполнить ETL (от англ. Extract, Transform, Load — «извлечение, преобразование, загрузка»), чтобы переместить данные в расположение для их анализа. Hadoop обходится без таких тонкостей. Напротив, исходя из того, что количество данных настолько велико, что их невозможно переместить, Hadoop анализирует данные на месте.