1908 г. английский математик Годфри Харди (1877–1947 гг.) и немецкий врач Вильгельм Вайнберг (1862–1937 гг.) независимо друг от друга вывели интересную закономерность: в ряду поколений одной популяции соотношение частот генотипов будет сохраняться, если не повлияют какие-то факторы извне. Причем эта закономерность может быть выражена математически.
Предположим, в некоей популяции представлены два аллеля: доминантный (А) и рецессивный (а). Обозначим частоту встречаемости первого аллеля буквой р, второго – q, все экземпляры популяции – 1. Соответственно, р + q = 1.
В условиях свободного скрещивания справедливо равенство: р2 + 2pq + q2 = 1.
Но нужны еще несколько условий:
• отсутствие мутаций;
• отсутствие отбора;
• большие размеры популяции;
• отсутствие миграции (прибытия в популяцию новых членов и ухода из популяции старых).