Системная динамика оформилась как направление исследований в 70-годы 20-го века трудами Дж. Форрестера, Д. Медоуз, Х. Босселя и др., создавших теоретическую основу и показавших многочисленное применение системно-динамических моделей в различных областях применения. Среди них многочисленные приложения как к гидравлике, физике, химии и инженерии, автоматизации и синтезу регуляторов, так и к экологии, социальным, политическим, финансовым сферам и в целом, сложным системам.
Из главных достоинств, которые предлагала системная динамика, оказались более эффективные расчеты динамики и возможности анализа во времени процессов, происходящих во времени. Это стало ее главным отличием от, как оказалось, достаточно статичного системного анализа, и является главной визитной карточкой среди множества различных видов системных исследований.
ПОЧЕМУ ЭТОТ КУРС?
Курсы по системной динамике излагают основы этого метода в связи с конкретными проблемами. Иными словами, слушателю представляют модель определенной системы или, класса таких систем. Сведения о принципах ее конструирования сообщаются в объеме, необходимом для понимания этой модели и выводов из нее.
Наиболее традиционным поводом для ознакомления слушателей читателя с системной динамикой является моделирование поведения сложных систем. Системная динамика представляется как один из важных инструментов для решения поставленной задачи. Но, можно сказать, что ее познавательное значение гораздо шире. Оно имеет весьма важные методологические, даже философские аспекты, обычно упускаемые из вида при узкоутилитарном подходе.
Предлагаемый курс показывает системную динамику как практический набор инструментов и демонстрирует язык современной науки. И это позволяет углубить понимание, как самого метода, так и систем, моделируемых с его помощью.
Подход к моделированию, основанный на системной динамике, хотя и носит в первоначальном рассмотрении теоретичность, но еще долго не потеряет практической ценности, поскольку "нет ничего практичней хорошей теории".
Этот курс – первый, который впервые рассматривает применение моделей системной динамики к проблемам маркетинга и продаж рынка промышленного оборудования B2B и B2C.
Язык, как известно, влияет на характер мышления. В курсе мы также пытаемся показать системную динамику как средство развития системного мышления. А оно особенно необходимо людям, сталкивающимся с такой, системной по определению, сферой, как маркетинг. Именно таким специалистам, прежде всего, адресован данный курс, и не только потому, что приводимые в ней примеры моделей относятся к указанному кругу проблем.
Дело в том, что все категории и закономерности системной динамики как языка, приводимые в курсе, необходимо имеют рыночную и экономическую трактовку. Мы приведем обобщенный взгляд на проблемы промышленных компаний и рынка промышленного оборудования и подробно проведем анализ типовых структур системно-динамических моделей и типичных форм их поведения, характеризующих динамику моделируемых систем.
Особо будут выделены программы построения системно-динамических имитационных моделей. Это дополнительный повод для уверенности в том, что предлагаемый курс будет с пользой прочитан специалистами отрасли, заинтересованными в большем понимании системного подхода, моделировании, современных информационных технологий, и ориентированными на информационно-системный анализ сложных проблем, возникающих в развивающихся системах.
Теперь кратко остановимся на содержании учебного пособия. Если в первых главах обсуждаются основные понятия и аппарат системной динамики, то основной акцент делается на тех главах, где приводятся и обсуждаются основные модели, связанные с описанием процессов, характерных для рынка промышленного оборудования. Степень сложности моделей нарастает от первой к последней. При этом, если простые модели, в основном, знакомят читателя с процедурой построения системно-динамических моделей, то более сложные модели носят прикладной характер.
В пособии рассматривается значительное количество примеров системно-динамических моделей, их математическое описание и даны их иллюстрации.
Изучение процессов, происходящих в рыночной экономике и других сферах, является довольно сложной и неоднозначной в своем решении задачей, поскольку данные процессы происходят в сложных (то есть обладающих дублирующими обратными связями) слабоструктурированных системах, над которыми эксперимент в том смысле, как он понимается в естественных науках, невозможен, а если и возможен, то его последствия трудно оценить и предугадать из-за "контринтуитивного поведения" указанных систем.
Такое поведение обусловлено как размером и сложной структурой систем, так и огромным объемом информации, порождаемой происходящими в таких системах процессами. Эта информация в подавляющем большинстве случаев не поддается адекватной оценке без использования информационного анализа и информационных технологий. А это бывает крайне необходимо в условиях "уникального выбора", ошибки которого для компаний могут стоить очень дорого, например, при принятии решений в области инвестиций или выхода на новые рынки.
Поэтому разработка системных и информационных методов изучения процессов, протекающих в сложных системах, является актуальной задачей, которую предстоит решать для достижения устойчивого развития компаний, которую беспокоят серьезные стратегические проблемы. В будущем эта необходимость только усилится.
Наиболее ярко это видно на примере процессов, протекающих в сложных системах, находящихся в переходной фазе. К таким системам можно отнести системы с сильным и непредсказуемым влиянием таких факторов как: политические факторы (страны с переходной экономикой), технологические (турбулизация, связанная с резким внедрением информационных технологий), экономические (появление динамичных отраслей, не поддающихся традиционным экономическим закономерностям) и социальные факторы (влияние на поведение нерегулируемых факторов, социальных сетей, динамика социального и молодежного поведения и пр.).
Применение классических методов маркетинга к анализу протекающих в указанных системах процессов наталкивается на серьезные трудности, поскольку данные методы создавались для изучения достаточно простых систем с неизменной структурой, которые находятся в устойчивом, хотя, возможно, и квазиравновесном, состоянии, и плохо применимы к сложным системам, переходящим из одного состояния в другое, особенно, если такой переход сопровождается сильным изменением структуры системы.
То же самое относится к информации, которой сопровождаются такие процессы. Если в период нахождения системы в устойчивом состоянии информация извлекается, обрабатывается и используется вполне определенными и неизменными на протяжении продолжительного временного интервала методами, то в переходный период изменяется не только качественный и количественный состав информации, но и технологии, связанные с ее переработкой. Примером этому могут служить переход на новую систему расчетов, цифровизация бизнеса, развитие CALS-технологий для совершенствования электронного документооборота в компаниях и бурное развитие в последние десятилетия информационных технологий, сопровождающее так называемый переход в новую "информационную" ("постиндустриальную" или "технотронную") стадию развития общества.
Исследованию процессов, протекающих в сложных системах, посвящено значительное число работ. Среди них особое место занимают работы в области системного анализа, зарождение которого началось еще в античной греческой философии (Платон, Аристотель, стоики, Евклид). Именно тогда впервые возникли представления о системе как о совокупности элементов, находящихся в структурной взаимосвязи друг с другом и образующих определенную целостность.
Затем эти представления получили дальнейшее развитие в работах Николая Кузанского, Спинозы, Канта, Шеллинга, Гегеля, Маркса и других известных мыслителей. Практически трудно найти мыслителя, который в той или иной мере не затрагивал этой темы.
Тем не менее, только в ХХ веке системный подход был существенно развит и привел к зарождению системного анализа. Так, например, австрийский ученый Людвиг фон Берталанфи в 30-40-е годы успешно применил системный подход к описанию биологических процессов и ввел понятие открытой системы. Однако еще в начале ХХ века (1912-1928 гг.) методология системного анализа была заложена русским ученым А.А. Богдановым, который пытался разработать новую науку об организации ("тектологию") и тем самым предвосхитил основные идеи кибернетики, развитые позднее группой ученых во главе с Н. Винером, У.Р. Эшби и другими учеными в 40-50-е годы. Кроме того, отражение системного подхода можно найти в работах В.И. Вернадского, Белл Д., Т. Котарбиньского, Б. Рассела, А. Тойнби и других исследователей XX века. Позднее, в 60-70-е годы системный анализ становится базовой методологией в экономике, экологии, социологии, демографии, политике, военном деле и других областях. Следует отметить, что еще в 30-х годах ХХ века в некоторых экономических моделях уже присутствовали элементы системного анализа. Так, например, кейнсианская модель формирования совокупного спроса содержит обратные связи, приводящие к мультипликационным эффектам: это положительная или отрицательная петля обратной связи между совокупным спросом и произведенным национальным доходом.
Основателем системно-динамического направления является Дж.Ф. Форрестер. Исходя из теории систем, дифференциальных уравнений, компьютерного моделирования, он разработал принципы и аппарат “системной динамики”, позволяющий анализировать и принимать управленческие решения. Им были созданы модель городской динамики, различные модели мировой динамики “Мир-1” и “Мир-2”(1971-1972 гг.), положившие начало глобальному моделированию, в рамках которого были разработаны следующие как системно-динамические, так и несистемно-динамические модели и проекты: “Мир-3” или "Пределы роста" Д. Медоуза (1972 г.); "Человечество перед выбором" М. Месаровича и Э. Пестеля (1974 г, концепция "органического роста"); "ЛИНК" Л. Клейна (с 1968 г, синтез национальных моделей); глобальная межотраслевая модель В. Леонтьева. В 1988 г. таиландским ученым К. Саидом была разработана системно-динамическая имитационная модель развивающихся стран, учитывающая взаимосвязь экономических, демографических, экологических, социально-политических и технологических факторов развития.
Системно-динамические модели позволили увязать воедино многие сферы функционирования человеческого общества. Так, в рамках концепции "устойчивого развития" в 1995 г. группой американских ученых была создана модель "США на пороге XXI-го века", которая моделирует развитие США с учетом экономических, демографических, экологических, социально-политических и технологических факторов.
Аналогичные модели при поддержке Института Тысячелетия и Всемирного банка были созданы и создаются в настоящее время во многих странах мира (Таиланд, Тунис, Китай, Малави, Грузия, Армения и другие). Например, весной 1997 г. были завершены обобщенные системно-динамические модели для изучения динамики макроэкономических показателей Грузии и Армении, а в марте 1997 г. на проходившем в Токио Международном Форуме по Глобальному Моделированию был представлен доклад о возможном будущем для Бангладеш, Туниса и США, составленный на основе системно-динамических моделей, разработанных для данных стран. Все это было бы невозможным без использования современных информационных технологий и информационного анализа.
Поэтому большинство зарубежных моделей, используемых для анализа сложных проблем и процессов, созданы и создаются в настоящее время на основе специальных сред разработки имитационных моделей. В настоящий момент известны такие наиболее распространенные среды разработки имитационных моделей как STELLA (Ithink), DYNAMO, VENSIM, POWERSIM. Они позволяют не только быстро создавать имитационные модели при помощи простых визуальных инструментов, но и проводить анализ работы созданных моделей и использовать данные модели для оценки воздействия управленческих решений на протекание сложных процессов в моделируемых системах.
Что же касается развития системного анализа и системно-динамического направления в РФ, то здесь следует отметить, что системные исследования активно стали развиваться в бывшем СССР в 70-80-е годы нашего столетия. Например, в ЦЭМИ АН СССР в 70-х годах была разработана эконометрическая модель экономики США, предназначенная для среднесрочного прогнозирования; в СО АН СССР был разработан ряд эконометрических моделей (например, С-106 и МОПЕК), моделирующих экономику различных стран в период с окончания второй мировой войны; в МГУ им. М.В. Ломоносова разрабатывались имитационные модели экономики СССР; в ЛГУ были построены модели управления системной образования, в вычислительном центре АН СССР в начале 80-х годов исследовательской группой под руководством академика Н.Н. Моисеева была создана имитационная модель глобальных экологических изменений.
В настоящее время работы в направлении имитационного моделирования ведутся во многих учебных и научных учреждениях.
Однако большая часть исследований проводилась в рамках системного анализа, а системно-динамическим исследованиям отводилась второстепенная роль. Тем не менее, в данном направлении работы велись и ведутся как по созданию системно-динамических имитационных моделей, так и по разработке отечественных сред разработки имитационных моделей. Так, в МИУ (ГАУ) им. С. Орджоникидзе на основе DYNAMO была разработана среда для разработки имитационных моделей ИМИТАК 32, при помощи которой были созданы региональные модели сельского хозяйства. В ЦЭМИ были созданы и использовались для имитационных моделей такие языки программирования, как GPSS, PLIS и SIMULA.
Если в период "холодной войны" системный анализ и системная динамика, а также разработка имитационных моделей носили ярко выраженный идеологический и политический характер, то в настоящее время в области системных исследований все больше и больше развивается международное сотрудничество как в области научных исследований и образования, так и в сфере применения имитационных моделей в бизнесе (управленческий консалтинг). Так, например адаптацией имитационных моделей, разработанных группой под руководством Дж.Ф. Форрестера (Массачусетский технологический институт, Дартмутский колледж), а также разработкой на их основе собственных моделей занимаются в МГУ, МГИМО, НИИСИ, МИФИ, Институте кибернетики им. В.М. Глушкова АН Украины и других организациях. В 1992 г. на базе НИИСИ был организован Институт системного анализа РАН (ИСА РАН), а в марте 1996 г. в Москве был учрежден Международный комитет по общим системам.
На этой странице вы можете прочитать онлайн книгу «Курс Маркетинг и продажи промышленного оборудования. Модуль Системная динамика рынка», автора Станислава Львовича Горобченко. Данная книга имеет возрастное ограничение 16+, относится к жанру «Маркетинг, PR, реклама». Произведение затрагивает такие темы, как «информационные системы бизнеса», «исследование процессов и систем». Книга «Курс Маркетинг и продажи промышленного оборудования. Модуль Системная динамика рынка» была написана в 2021 и издана в 2022 году. Приятного чтения!
О проекте
О подписке