Хорошая, неистощенная, естественноплодородная почва чрезвычайно способствует всем садовым культурам; поэтому только в крайних случаях довольствуются почвой бедной и истощенной, так как улучшение, составляющее необходимое условие для успешной культуры, в последнем случае обходится довольно дорого и может даже повести к прямым убыткам. Что данная естественная почва плодородна, лучше всего обнаруживается покрывающею ее естественною растительностью и состоянием ее. Лиственные древесные породы, кормовые травы, злаки и даже некоторые сорные растения своим присутствием и степенью развития часто прямо указывают на качества почвы. Кто ближе знаком с местною флорой, тот может до некоторой степени верно судить о физических свойствах и о составных частях почвы, которые выражаются в произрастании некоторых особенных видов растений на песчаной, глинистой, известковой или перегнойной почвах.
Так, например, из древесных растений дуб, яблоня, ясень и вяз указывают на тяжелую почву; сосна, клен, орешник, ракитник и вереск – на легкую; липа, рябина, жостер, бузина и малина – на черноземную, а ежевика – на известковую почвы. Ольха, ива, калина и крушина обозначают влажные места; Ledum, Andromeda, Myrica – болотные и торфяные места. Число травянистых растений, которые с большим или меньшим основанием приняты за почвенные указатели, бесконечно; мы упомянем только о немногих из них. Глинистой почве свойственны: мятлик (Poa. pratensis), ежа (Dactylis glomerata), чертополох (Cirsium arvense) и молочник полевой (Sonchus arvensis). Легкой песчаной почве – пырей, овсяница овечья (Festuca ovina), Aira flexuosa, Phleum Bohmeri и Medicago lupulina. Перегною – крапива, пырей, лопушник и молочник огородный (Sonchus oleraceus), известковой – копытник (Tussilago), Aster Amellus; гипсовой – различные виды Gypsophila, из коих у нас чаще встречается только однолетний G. muralis, на известковом мусоре и прочих бесплодных сухих местах. Торфяной – Spiraea ulmaria, осока, тростник и пушица разных видов. Влажной почве свойственны: Aira caespitosa, Phalaris arundinacea, Agrostis stolonifera, Alopecurus geniculatus, щавель, хвощ, незабудка, мокрица, различные дикие гречихи и проч., которые отчасти уже составляют переход к водяным растениям.
Приблизительно верная оценка почвы также может быть произведена прямым исследованием толщины и свойств верхнего пласта; для этой цели вырывают яму около одного арш. (71 см) или более глубины и прямо на глаз судят, по поднятой почве о ее свойствах; точно так же на отвесных стенах ямы может быть измерена толщина почвенного и подпочвенного слоев. Особенную плодородность почвы прежде исключительно приписывали содержащемуся в ней перегною, но впоследствии пришли к заключению, что растения питаться органическими веществами не могут, даже вполне развиваются при их отсутствии, тогда как при недостатке некоторых минеральных веществ жизнь растения становится невозможной. Следовательно, для поддержания этой жизни, т. е. для питания растения, необходимы известные минеральные вещества, а именно: кали, известь, магнезия, окись железа, фосфорная кислота, серная и азотная кислота (или аммиак); из воздуха же растения принимают угольную кислоту, углерод которой входит в состав органической части растения.
При всей основательности, так называемой, минеральной теории, нельзя забывать, что перегной производит неоценимое физическое улучшение тяжелой почвы и что, сверх того, в перегное тоже находится значительное количество необходимых для жизни растений минеральных соединений и, наконец, много не менее важных азотистых, главным источником которых служит перегной и навоз.
В жизни растений большое значение имеют также бактерии.
Особенно важную для растительности роль играют в почве бактерии, вызывающие нитрификацию, т. е. превращение недоступных или малодоступных для растений азотистых веществ в легко доступные азотнокислые соли. Нитрифицирующая бактерия есть особый вид – Bacillus nitrificans Шлезинга и Мюнца или Nitromonas Виноградского. В кубическом дюйме (16 см3) перегнойной почвы нитрофицирующие бактерии встречаются миллионами; они разрушаются так же быстро, как размножаются, и обогащают почву деятельными азотистыми соединениями на пользу растений.
Такую же пользу извлекают растения из семейства бобовых от другой бактерии, названной Пражмовским Bacillus radicicola, которая поселяется непосредственно на корнях бобовых, где вызывает образование известных корневых шишечек или желвачков; такие желвачки легко наблюдать у гороха, бобов, люцерны, вики, клевера и т. д. Чистые культуры некоторых из этих бактерий бобовых уже поступили за границей в торговлю под названием nitragin; нитрагином смачивают семена перед посевом. Роль этих бактерий состоит в том, что они усвояют недоступный для высших растений свободный азот воздуха почвы и переводят его в соединения, полезные для их питания. Благодаря этим бактериям, бобовые растения могут обходиться без какого бы то ни было азотистого удобрения. Упомянем здесь еще один ряд низших организмов, грибки Mycoriza, которыми обрастают корневые мочки многих древесных растений в виде грибного мицелия; они служат, как полагают, необходимым питательным пособием для растений-хозяев, которые, в свою очередь, отпускают им необходимые питательные вещества. Такие сочетания, основанные на обоюдной пользе, получили название «симбиоза».
Минеральные вещества (зола) составляют ничтожную по весу составную часть растений; главную же массу составляют органические вещества, которые при накаливании, при доступе кислорода воздуха, сгорают и оставляют только минеральную несгораемую часть (золу), в количестве от 3 до 6 процентов, редко более, напр., в некоторых травянистых растениях до 18 %. Исследование состава органических веществ растений принадлежит области так называемой органической химии, которая также занимается вопросом об источнике органических веществ. Вопрос о способе усвоения веществ растениями излагается в физиологии растений. Поэтому для изучения этих вопросов я отсылаю читателей к учебникам физиологии и химии.
Элементы, входящие в состав органической части растений, суть следующие (буквы С, Н и др. – химические знаки, а цифры – атомные веса):
1. Углерод (Carbonium) С. = 12.
2. Водород (Hydrogenium) Н. = 1.
3. Кислород (Oxygenium) О. = 16.
4. Азот (Nitrogenium) N = 14.
Элементы никогда не поступают в растения в чистом виде, а всегда в соединении, состоящем из двух или более элементов. Растения не могут усвоить прямо углерод, азот или водород, а всегда ассимилируют их в виде соединений.
1) Углерод составляет главную массу твердых веществ растений, а именно до 40 % в сухих древесных породах; остальные 60 % составляют водород и кислород (около 40 %), вода (около 15 %) и минеральные вещества (3–6 %). Семена растений еще богаче углеродом; особенно в этом отношении замечательны семена масличных растений. Благодаря высокому процентному содержанию углерода в древесине, масле, смоле, торфе, каменном угле, эти вещества могут служить нам нагревательным и осветительным материалами. Громадная масса углерода, превращающаяся при горении и гниении в углекислоту, должна обратно поступать в растения из воздуха через микроскопические отверстия листьев (устьица), – где она снова разлагается на углерод и кислород, который поступает обратно в воздух. В чистом виде углерод встречается в природе только в алмазе; графит, антрацит, древесный и каменный угли содержат значительную примесь других веществ. Соединение углерода с кислородом, т. е. угольная кислота (СО2), встречается в соединении со многими основаниями, образуя углекислые соли, из коих углекислая известь для нас имеет наиболее важное значение. В воздухе и почве встречается небольшое количество свободной угольной кислоты. В вулканических местностях она часто выделяется из трещин скал, причем вследствие большего сравнительно с воздухом удельного веса, она занимает нижний слой атмосферы в таких местностях, так что случайно попавшие сюда животные погибают (Собачья пещера). Растения в чистой углекислоте существовать не могут и погибают; так в вулканических местностях во время извержений, вследствие местного накопления углекислоты, погибает вся растительность. После одного извержения Везувия, в начале прошлого столетия, найдено и опубликовано 43 места, где скопились значительные количества углекислоты. Углерод с кислородом образуют еще и другое соединение, называемое окисью углерода (СО), которое представляет собою весьма ядовитое газообразное тело, то самое, которое производит «угар». Угар вредит растениям менее, чем животным, не убивает их, но производит болезненное состояние: угоревшие в комнате или оранжерее камелии теряют цветочные почки. Другое опасное соединение углерода с водородом – болотный газ СН4, смесь которого с воздухом, приведенная в соприкосновение с пламенем, взрывается. Газ этот часто встречается в каменноугольных копях, где его взрывы причиняют большие несчастья.
Заботиться о доставлении растениям угольной кислоты – нет надобности; ее всегда достаточно содержится в воздухе, воде, почве и различных соединениях; кроме того, она развивается при тлении навоза; торфяная почва изобилует углеродом, и из нее очень часто выделяется вышеупомянутый болотный газ.
2) Водород очень распространен в природе, но никогда почти не встречается в чистом виде, а всегда в соединения с другими элементами; самое распространенное соединение водорода есть вода, т. е. соединение его с кислородом (H2O). Вода, содержащая в растворе углекислоту, есть могущественный растворитель и играет весьма важную роль в экономии растительного царства. Вопрос о снабжении растений водою, равно как и вопрос об удалении излишней сырости, будут рассмотрены нами ниже. Водород, в соединении с азотом, образует аммиак; с кислородом и в то же время с азотом дает азотистую и азотную кислоты, а соединяясь с углеродом, дает, как было сказано, болотный газ. В организме растений и животных водород составляет не более 5–6 %.
3) Кислород в смеси с азотом образует воздух, в котором первого по объему заключается 21 %, а второго 79 %. Кислород входит в состав растений в значительном количестве и составляет в них от 30 до 40 %. Сверх того, он входит в состав многочисленных соединений, образующих твердую кору земного шара: только, так называемые, благородные металлы: золото, платина и серебро встречаются в природе не в окисленном состоянии. Горение, тление суть один; и тот же процесс окисления – соединение кислорода с растительными и минеральными веществами, – совершающегося только с различною степенью скорости; при этих процессах всегда развивается теплота.
Растения, кроме кислорода, выделяют также углекислоту, причем углекислота выделяется ночью; при этом, как и при дыхании животных, развивается теплота, хотя и в незначительной степени. Почти весь находящийся в составе растений кислород поступает в них через посредство корней, в виде кислородных соединений, составляющих питательные вещества. При неисчерпаемости источников кислорода растения могут получать его в неограниченном количестве и без всякой заботы со стороны человека. Кислород обладает еще свойством под влиянием фосфора или электрической искры, а может быть при многих других обстоятельствах, переходить в особое видоизменение, называемое озоном или озонированным кислородом. Озон есть газ с едким, характерным запахом, обладает свойством окислять многие вещества, на которые обыкновенно кислород не действует (так, напр., окисляет серебро), и, подобно хлору и серным парам, обесцвечивает многие краски. Нет сомнения, что озон, который всегда находится, хотя и в ничтожном количестве, в воздухе и почве, принимает участие в разложении и образовании различных соединений.
4) Азот составляет около 80 % воздуха, в котором он находится в смеси с кислородом. Этот элемент, в противоположность кислороду, отличается полною индиферентностью и даже совсем не соединяется со многими элементами. В растительных веществах азота находится сравнительно немного, но тем не менее он играет довольно важную роль, и количество его определяет степень питательности растительных веществ как для человека, так и для животных. В веществах животного происхождения его находится больше; так, в мясе, коже, рогах, волосах, ногтях и копытах он составляет значительный процент. Из культурных растений азота наиболее содержится в семенах хлебных и особенно бобовых растений, где его содержание доходит до 60 % по весу.
В свободном состоянии азот вообще не усвояется ни растениями (кроме бобовых), ни животными, и только немногие из его соединений способны быть ассимилированными растениями. Бобовые растения способны усваивать свободный азот из атмосферы при помощи специфических бактерий, поселяющихся на их корнях. Главным источником азота всегда останется азотистое удобрение, как, например, извержения животных, роговые стружки, чилийская селитра (азотнокислый натр) и другие азотистые удобрительные вещества. Это, на практике основанное мнение, противоречит мнению Либиха о том, что будто бы растения в природе без нашего содействия находят достаточное количество азота в различных соединениях, находящихся в почве и в воздухе; на самом деле все эти источники недостаточны для достижения роскошного развития, какого требуют овощные растения. Надобно заметить, что азотистое удобрение особенно способствует развитию листьев и стеблей, но не семян, следовательно, менее выгодно при семеноводстве, чем при культуре овощных листостебельных растений.
В области растительной физиологии ни один вопрос не подвергался такой подробной и всесторонней разработке, как вопрос об источнике и усвоении растениями азота; тем не менее, он до сих пор остается вопросом, еще не вполне разрешенным. Во-первых, относительно источника азота заметим следующее: нейтральный азот воздуха, который при обыкновенных условиях не соединяется с кислородом, обладает однако способностью, под влиянием электрической искры (молнии), соединяться с кислородом и водою и образовывать таким образом азотную кислоту (HNО3), которая действительно, всегда, хотя и в ничтожных количествах, встречается в воздухе, воде и почве и притом летом более, а зимою менее. Кроме этой степени окисления азота существует еще несколько других, но так как они не имеют для нас значения, то мы их оставим в стороне. Азотная кислота представляет собою жидкость, разрушающую не только все органические вещества, но растворяющую почти все металлы. Разумеется, ничтожные количества азотной кислоты, находящейся в воздухе и воде, не могут действовать так энергично, и понятно, что в почве в свободном состоянии ее не бывает, а встречается она там в виде солей калия, кальция и др. На старых, пропитанных водою и навозною жидкостью кирпичных стенах конюшен часто наблюдаются нежные белые кристаллические налеты, состоящие из известковой соли азотной кислоты, то есть азотнокислого кальция (Ca(NО3)2.
При разложении азотистых органических веществ всегда образуется соединение азота с водородом – аммиак (NH3).
Аммиак представляет собою газообразное вещество с сильным характерным едким запахом; он прямо соединяется с кислотами, образуя соли, из которых особенно углекислый аммиак имеет весьма важное для растений значение, ибо он, как кажется, доступнее других солей. Исследования показали, что растения, за исключением бобовых, для образования содержащихся в них азотистых веществ не могут пользоваться свободным азотом, но зато те же исследования показали, что растения могут одинаково пользоваться для образования азотистых веществ и аммиачными соединениями, и азотнокислыми солями.
При известных условиях аммиак может окисляться вышеупомянутыми нитрифицирующими бактериями в азотную кислоту: для совершения этого процесса необходимы – достаточный доступ воздуха, присутствие влаги и щелочи и известная температура (от + 10 до+35°); на этом процессе основано получение селитры в буртах.
Шенбейн показал, что при испарении воды свободный азот воздуха окисляется, причем образуется азотисто-кислый аммиак (NH4NO4).
При гниении навоза, и особенно конского навоза, выделяется вместе с водяными парами огромное количество аммиака, запах которого слышен кругом навозных куч и на свежеудобренном поле. Для сбережения удобрительной силы навоза весьма полезно препятствовать, по возможности, потере аммиака покрытием навоза землею, составные части которой в состоянии поглощать аммиак.
Благодетельное влияние небольших количеств аммиачных паров особенно ясно выражается на растениях, растущих в парниках или теплицах, нагретых навозом, ибо те же самые растения развиваются значительно хуже, если они будут помещены в парниках или теплицах, нагреваемых топливом; это особенно относится к тыквенным и овощным растениям. Хвойные растения, папоротники и все плодовые деревья не любят большого количества таких паров; они особенно вредны цветам всех растений.
При соединении азота с углеродом получается синерод, который с водородом образует сильнейший яд – синильную кислоту: соединения последней нередко встречаются в растениях; так, напр., в малом количестве она находится в листьях лавровишневого дерева (Prunus Laurocerasus), в семенах горького миндаля, апельсинов, лимонов, яблок и мн. друг. Из этого не следует заключать, что растения заимствуют синильную кислоту извне: она образуется в самом растении. В медицине это ядовитое вещество употребляется в виде чрезвычайно слабого раствора и применяется как успокоительное средство при сердцебиении и нервном возбуждении.
О проекте
О подписке