Может быть, в действительности более правдоподобно, чт...➤ MyBook
image

Цитата из книги «Фейнмановские лекции по физике. Современная наука о природе»

Может быть, в действительности более правдоподобно, что за 30 испытаний получается 16 выпадений «орла»? Минуточку терпения! Если мы сложим вместе результаты всех серий, то общее число испытаний будет 3000, а общее число выпадений «орла» в этих испытаниях достигает 1492, так что доля испытаний с выпадением «орла» в результате будет 0,497. Это очень близко к половине, но все же несколько меньше. Нет, мы все-таки не можем предполагать, что вероятность выпадения «орла» больше, чем 0,5! Тот факт, что в отдельных испытаниях «орел» чаще выпадал 16 раз, чем 15, является просто случайным отклонением, или флуктуацией. Мы же по-прежнему ожидаем, что наиболее правдоподобным числом выпадений должно быть 15. Можно спросить: а какова вероятность того, что в серии из 30 испытаний «орел» выпадет 15 раз или 16, или какое-то другое число раз? Мы говорим, что вероятность выпадения «орла» в серии из одного испытания равна 0,5; соответственно вероятность невыпадения тоже равна 0,5. В серии из двух испытаний возможны четыре исхода: ОО, OP, PO, PP. Так как каждый из них равновероятен, то можно заключить: а) вероятность двух выпадений «орла» равна 1/4; б) вероятность одного выпадения «орла» равна 2/4; в) вероятность невыпадения «орла» равна 1/2. Это происходит потому, что существуют две возможности из четырех равных получить одно выпадение «орла» и только одна возможность получить два выпадения или не получить ни одного. Рассмотрим теперь серию из трех испытаний. Третье испытание с равной вероятностью может дать либо «орел», либо «решку», поэтому существует только один способ получения трех выпадений «орла»: мы должны получить два выпадения «орла» в двух первых испытаниях и затем выпадение «орла» в последнем. Однако получить два выпадения «орла» можно уже тремя способами: после двух выпадений «орла» может выпасть «решка» и еще два способа – после одного выпадения «орла» в первых двух испытаниях выпадет «орел» в третьем. Так что число равновероятных способов получить 3, 2, 1 и 0 выпадений «орла» будет соответственно равно 1, 3, 3 и 1; полное же число всех возможных способов равно 8. Таким образом, получаются следующие вероятности: 1/8, 3/8, 3/8, 1/8. Эти результаты удобно записать в виде диаграммы (фиг. 6.3). Фиг. 6.3. Диаграмма, иллюстрирующая число различных возможностей получения 0, 1, 2 и 3 выпадений «орла» в серии из трех испытаний. Ясно, что эту диаграмму можно продолжить, если мы интересуемся еще бóльшим числом испытаний. На фиг. 6.4 приведена аналогичная диаграмма для шести испытаний. Фиг. 6.4. Диаграмма, подобная изображенной на фиг. 6.3, для серии из шести испытаний. Число «способов», соответствующих каждой точке диаграммы, – это просто число различных «путей» (т. е., попросту говоря, последовательность выпадения «орла» и «решки»), которыми можно прийти в эту точку из начальной, не возвращаясь при этом назад, а высота этой точки дает общее число выпадений «орла». Этот набор чисел известен под названием треугольника Паскаля, а сами числа называются биномиальными коэффициентами, поскольку они появляются при разложении выражения (a + b)n. Обычно эти числа на нашей диаграмме обозначаются символом, или (число сочетаний из n по k), где n – полное число испытаний, а k – число выпадений «орла»
16 апреля 2020

Поделиться