© Бернацкий А.С., автор-составитель, 2011
© ООО «Издательский дом «Вече», 2011
На островах Новой Зеландии обитает существо, удивительно похожее на ящерицу Это гаттерия, или туатара, что значит – «несущая шипы». У этого организма много уникальных особенностей, но самая интересная из них – наличие теменного (или третьего) глаза, который находится под кожей на верхней стороне головы. Впрочем, глазом его можно назвать лишь с некоторой натяжкой, так как этот орган хотя и имеет хрусталик и сетчатку с нервными окончаниями, но лишен мышц или каких-либо иных приспособлений для аккомодации.
У гаттерии, только что вылупившейся из яйца, теменной глаз виден достаточно отчетливо – как голое пятнышко, окруженное, подобно цветочным лепесткам, чешуйками. Со временем «третий глаз» зарастает, и у взрослых туатар он уже не заметен. Да и видеть им гаттерия уже не может. Зато он чутко реагирует на освещенность и тепло, помогая тем самым животному регулировать температуру тела путем выбора места и позы по отношению к солнечным лучам.
«Третий глаз» имеют и некоторые пресмыкающиеся. Но у современных высших позвоночных, в том числе и у человека, он видоизменился, превратившись в гормональный орган – эпифиз, или шишковидную железу. Такое название он получил потому, что по внешнему виду напоминает сосновую шишку (греч. epiphysis – шишка, нарост).
Гаттерия, или туатара – знаменитая ящерица с «третьим глазом»
Впрочем, шишковидную форму эпифиз имеет редко. Чаще он бывает округлым или шаровидным. Есть сведения и о конусовидном эпифизе.
Сам по себе эпифиз – довольно скромное и неприметное образование, примостившееся в неглубокой борозде между верхними холмиками среднего мозга и над таламусом. Кстати, ученые подтверждают, что эволюционно эпифиз оказался в центре головного мозга не сразу – раньше он и впрямь выполнял функцию «затылочного глаза», и только позднее, по мере развития полушарий мозга, эта железа оказалась практически в центре.
Длина его не более 8–15 миллиметров, а ширина и толщина – 6–10 и 4–6 миллиметров, соответственно. Масса шишковидной железы у взрослого человека – 100–180 миллиграммов, или около 0,2 грамма. Но в связи с тем, что с возрастом в эпифизе могут появляться кисты и отложения мозгового песка, его размеры и масса могут быть значительно больше указанных средних цифр.
По цвету шишковидная железа обычно темнее соседних отделов мозга и имеет красновато-сероватый цвет.
Многие столетия роль этой железы в организме оставалась непонятной и загадочной.
И чтобы хоть как-то объяснить присутствие эпифиза в организме, ему нередко приписывали мистические свойства, в частности, функции «третьего глаза».
Многие мистики в своих творениях утверждали, что именно благодаря шишковидной железе осуществляется связь мозга с особым эфирным телом, которое незримо присутствует над каждым человеком. Более того, эпифизу приписывалась способность восстанавливать образы и опыт прошлой жизни, регулировать поток мыслей и осуществлять телепатический контакт.
Например, великий французский философ XVII века Рене Декарт считал, что эта железа выполняет функции посредника между разумом и духами, то есть впечатлениями, поступающими от парных органов – глаз, ушей, рук. Но фантазия великого француза на этом не остановилась, и он наделил миниатюрный орган возможностью двигаться, а также направлять «животные духи» через поры мозга по нервам к мышцам.
В качестве доказательства особой исключительности эпифиза длительное время являлся тот факт, что этот орган, так же как в грудной клетке сердце, не имеет пары и занимает срединное положение в мозге.
Путь познания извилист и тернист, и порой в процессе изучения того или иного явления или предмета у ученых появляются самые противоречивые, порой – диаметрально противоположные точки зрения в отношении предмета исследования. Похожая история случилась и с эпифизом.
Действительно, в двадцатых годах прошлого века многие специалисты вдруг посчитали, что щитовидная железа – это всего лишь рудиментарный орган, который никакой существенной функции в организме не выполняет, а значит, и заниматься им вплотную не имеет смысла.
Более того, появилось даже предположение, что у человека миниатюрное тельце вообще не функционирует ни в эмбриогенезе, ни после рождения.
Такая точка зрения привела к тому, что эпифизом в течение нескольких десятилетий почти никто из исследователей не занимался. Впрочем, сложность изучения и труднодоступное для наблюдений местоположение эпифиза также сыграли в этом свою роль.
Однако ряд выдающихся открытий в физиологии мозга и эндокринологии, происшедших в 60-е годы прошлого столетия, вновь пробудили у биологов и медиков интерес и к изучению эпифиза.
Начались углубленные его исследования.
А вскоре выяснилось, что эпифиз вырабатывает два гормона: мелатонин и серотонин. Мелатонин синтезируется ночью и оказывает на организм успокаивающее действие. Серотонин, наоборот, вырабатывается днем и стимулирует активность и эмоциональный тонус организма. Если же в организме появляется избыток серотонина, то ночью он трансформируется в мелатонин, обеспечивая крепкий и спокойный сон.
Кроме того, мелатонин оказывает существенное влияние на активность половой функции у человека: подавляет раннее половое созревание и тормозит ее чрезмерное проявление у взрослых индивидуумов. То есть благодаря мелатонину половая активность сохраняется на неком среднем стабильном уровне, который обеспечивает продление детородной функции.
Эти выводы позволили ученым предположить, что мелатонин, удлиняя репродуктивный период, возможно, удлиняет и продолжительность жизни. В 1994 году высказанная догадка была доказана и в эксперименте на животных.
Сделал это итальянский ученый Д. Пьерпаоли, пересадивший шишковидные железы от старых мышей молодым, и, наоборот, от молодых – старым.
Спустя недолгое время молодые мыши преждевременно состарились, и, не прожив и двух третей обычной мышиной жизни, умерли. Старые же грызуны с молодыми железами, напротив, стали выглядеть и вести себя, как молодые, и прожили намного больше, чем обычные мыши. Более того, заметное омоложение давала и инъекция синтетического мелатонина пожилым мышам.
На основании полученных данных была выдвинута гипотеза, согласно которой старение наступает оттого, что эпифиз перестает вырабатывать мелатонин. И если ее функцию поддержать искусственно, то старение не наступит.
Теософы, в свою очередь, не сомневаются, что эпифиз помимо выработки гормонов является еще и связующим звеном между миром физическим и миром духовным, способным воспринимать и излучать «тонкую» энергию не электромагнитной природы. И основную роль в этом играют особые, достаточно прочные песчинки, уже давно обнаруженные в эпифизе почти всех взрослых людей. Их назвали «мозговым песком».
Е.П. Блаватская в «Тайной Доктрине» писала: «…этот песок весьма таинственный и ставит в тупик исследования всех материалистов. Только этот знак внутренней самостоятельной активности шишковидной железы не позволяет физиологам классифицировать ее как абсолютно бесполезный атрофировавшийся орган».
И только в недавнее время гистохимики попытались установить природу и значение «мозгового песка». Выяснилось, что размеры песчинок колеблются от 5 микрон до 2 миллиметров, и по внешнему виду часто напоминают тутовую ягоду или шишку. Состоят они из органической основы: коллоида, пропитанного фосфатами или карбонатами кальция, фосфатами магния или аммония, который считается секретом пинеалоцитов – клеток эпифиза. И при этом мозговые песчинки в поляризованном свете обнаруживают двойное лучепреломление с образованием «мальтийского» креста.
Благодаря наличию фосфорнокислого кальция песчинки первично флуоресцируют в ультрафиолетовых лучах, как и капельки коллоида, голубовато-белым свечением.
Подобную же голубую флуоресценцию дают и миелиновые оболочки нервных стволов. Обычно отложения солей имеют характер колец – слоев, чередующихся со слоями органического вещества. Чего-то большего о «мозговом песке» ученым пока выяснить не удалось.
Каждое мгновение, каждые сутки в тканях человеческого организма разрушается и восстанавливается огромное количество клеток. Например, согласно профессору А.П. Мясникову, гибнет и заменяется 450 миллиардов эритроцитов, от 22 до 30 миллиардов лейкоцитов и от 270 до 430 миллиардов тромбоцитов, 50 % от общего числа эпителиальных клеток желудка и кишечника, 1/75 часть костных клеток скелета и 1/20 часть всех покровных клеток тела.
Но вот нервные клетки, как считалось до последнего времени, восстановлению не подлежат, хотя на протяжение жизни их количество в человеческом мозге неизменно убывает. А ведь это, по сути, – самый важный орган тела.
Разрушить эту устоявшуюся истину более ста лет назад, в 1906 году, попытался известный испанский гистолог и нобелевский лауреат Сантьяго Рамон-и-Кахаль. Однако «новорожденных» нейронов в головном мозге человека он не нашел.
Но вот что любопытно: у многих животных, в том числе и у высших, нервные клетки восстанавливаются. Это явление у лягушек и аксолотлей, а потом – и у крыс, в 1967 году обнаружил немецкий исследователь В. Кирше.
Нейроны, которые все-таки восстанавливаются
Ради справедливости следует отметить, что еще в 1956 году российский биолог И. Рампан восстановление нервной ткани обнаружил у собак, волков, а также крыс и других видов животных. Он выяснил, что после повреждения мозга сохранившиеся нервные клетки светлеют и внутри них формируются два ядра, затем делится пополам цитоплазма. В результате этого процесса появляются два нейрона, то есть новые нервные клетки.
Затем, с разницей в несколько лет, в 1962 году американский ученый Жозеф Олтман провел эксперимент, который доказывал наличие у млекопитающих нейрогенеза – возникновения новых нервных клеток в головном мозге взрослых животных. Для этого ученый с помощью электрического тока разрушил один из участков мозга крысы и ввел в него радиоактивное вещество, обладающее способностью проникать в молодые клетки. А спустя несколько месяцев Олтман обнаружил новые радиоактивные нейроны в таламусе и коре головного мозга.
И хотя результаты своих исследований ученый опубликовал в столь престижном журнале, как «Science», нейробиологи должного внимания им не придали.
В 70-е годы прошлого века советские ученые, изучая повреждения различных участков мозга у крыс и собак, установили, что по краям раны нервные клетки размножаются и появляются новые нейроны. Тем не менее нервная ткань в области травмы полностью не восстанавливалась.
В начале 1980-х годов американский нейробиолог Фернандо Ноттебом, исследуя головной мозг самцов канареек, обнаружил, что те отделы, которые отвечают за песенный репертуар, весной, когда птицы пытаются привлечь пением самок, расширяются, а позднее – сжимаются. Происходят эти явления, соответственно, за счет увеличения и сокращения количества нейронов.
Кстати, «усыхая», мозг теряет и свои песни, и их приходится разучивать заново.
Выходит, что у многих видов животных потенциал для восстановления тканей мозга все же имеется. Но в отношении человека этот вопрос решен не был, и большинство ученых склонялись к пессимистическому прогнозу.
Наконец, в 1985 году разобраться с этой проблемой попытался американский нейробиолог Пашко Ракич. Для этого он изучил сотни образцов мозга ближайшего по эволюционной лестнице человеческого предка – обезьян. Вывод, сделанный ученым на основании полученных результатов, был категоричен: «Ни у одного из взрослых животных в головном мозге не удалось найти даже одной новой клетки с морфологическими особенностями нейрона».
Но в 1998 году немецкий биолог Эберхард Фукс и американский психолог Элизабет Гоулд заявление Ракича опровергли.
Они тоже изучали мозг обезьян. Но в своих исследованиях для маркировки новых нейронов применили бром-деоксиуридин, молекулы которого при делении клеток встраиваются в структуру ДНК. И если в головном мозге подопытного животного позднее появляется измененная ДНК, значит, в нем произошло деление клеток и появились новые нейроны.
И, действительно, спустя всего несколько часов после введения препарата в мозге животных обнаружились новые нейроны. Было также установлено и место, где они рождались. Им оказался гиппокамп – отдел мозга, играющий ведущую роль в формировании памяти.
Однако этот эксперимент отнюдь не доказывал, что такой же механизм действует и в головном мозге человека. Потому что без быстрого вскрытия нельзя установить, что в головном мозге произошли определенные изменениях, в частности, появились новые нейроны.
Но на помощь исследователям пришел бром-деоксиуридин – тот самый препарат, который в своих экспериментах использовали Фукс и Гоулд. Оказалось, что это соединение применяется и в онкологических клиниках для контроля над ростом раковых клеток. Воспользовался этой особенностью препарата шведский нейробиолог Петер Эрикссон.
Получив разрешение на исследование головного мозга пациентов, умерших от рака, ученый в конце 1998 года обнародовал сенсационный результат: в гиппокампе больных людей каждый день вплоть до их смерти возникало от пятисот до тысячи нейронов.
Теперь ученым остается лишь понять, какие факторы влияют на этот процесс. И это очень важно для лечения болезней, связанных с патологией мозга.
Ведь зная, почему в гиппокампе появляются новые нервные клетки, ученые смогут заставить обновляться и другие части мозга. А это, в свою очередь, поможет справиться с некоторыми болезнями мозга и последствиями его травм.
И хотя факторы, стимулирующие появление новых клеток, пока не установлены, зато ученые в опытах над обезьянами выяснили, что возникновение молодых нейронов подавляет даже незначительный стресс.
Кстати, в отдельных опытах ученым удавалось наблюдать рост нейронов не только в гиппокампе, но и в других частях мозга. И если удастся понять, что за механизм приводит к появлению здесь новых нейронов, станет ясно, почему при болезнях Альцгеймера и Паркинсона эта программа не работает.
На этой странице вы можете прочитать онлайн книгу «100 великих тайн сознания», автора Неустановленного автора. Данная книга имеет возрастное ограничение 12+, относится к жанрам: «Энциклопедии», «The arts». Произведение затрагивает такие темы, как «человеческий организм», «познавательная литература». Книга «100 великих тайн сознания» была написана в 2011 и издана в 2011 году. Приятного чтения!
О проекте
О подписке