Ближе к середине прошлого десятилетия была накоплена к...➤ MyBook
image

Цитата из книги «Об ИИ без мифов. Путеводитель по истории Искусственного Интеллекта»

Ближе к середине прошлого десятилетия была накоплена критическая масса знаний в части глубокого обучения ANN. В таких случаях всегда, образно говоря, кто-то отрывается от пелотона и зарабатывает майку лидера, так было и, видимо, будет в науке всегда. В данном случае в роли лидера оказался Джеффри Хинтон, британский ученый, продолживший свою карьеру в Канаде. С 2006 года он сам и вместе с коллегами начал публиковать многочисленные статьи, посвященные ANN, в том числе и в научно-популярном журнале Nature, чем заслужил себе прижизненную славу классика. Вокруг него образовалось сильное и сплоченное сообщество, которое несколько лет работало, как теперь говорят, «в невидимом режиме». Его члены сами называют себя «заговорщиками глубокого обучения» (Deep Learning Conspiracy) или даже «канадской мафией» (Canadian mafia). Образовалось ведущее трио: Ян Лекун, Иешуа Бенджо и Джеффри Хинтон, их еще называют LBH (LeCun & Bengio & Hinton). Выход LBH из подполья был хорошо подготовлен и поддержан компаниями Google, Facebook и Microsoft. С LBH активно сотрудничал Эндрю Ын, работавший в МТИ и в Беркли, а теперь возглавляющий исследования в области искусственного интеллекта в лаборатории Baidu. Он связал глубинное обучение с графическими процессорами. Сегодня машинное обучение ассоциируется с глубоким машинным обучением, то есть с одним из методов реализации машинного обучения, где средствами искусственных нейронных сетей имитируются структуры и функции мозга, поэтому его иногда еще называют структурным или иерархическим обучением.
11 ноября 2022

Поделиться