Сверточные сети
Очередным шагом в развитии прикладного коннекционизма стало создание иерархической многослойной ANN сверточного типа (Convolutional Neural Network, CNN) в 1980 году. Японский исследователь Кунихика Фукусима (Kunihiko Fukushima) назвал ее неокогнитрон. Он занимался распознаванием рукописных текстов и взял в качестве прототипа идею когнитрона, ранее выдвинутую шведом Торстеном Визелем (Torsten Wiesel, 1924) и канадцем Дэвидом Хьюбелом (David Hubel, 1926–2013). В 1981 году Визель и Хьюбел стали лауреатами Нобелевской премии по физиологии и медицине «за открытия, касающиеся принципов переработки информации в нейронных структурах». Фундаментальные работы Визеля и Хьюбела по нейрофизиологии зрения заложили основы организации и развития нейронных цепей, ответственных за зрительное распознавание объектов. Иногда, например в той же русскоязычной википедии, открытие CNN ошибочно приписывают Яну Лекуну.
В начале 80-х существенный вклад в развитие ANN сделал финский ученый Теуво Кохонен (Teuvo Kohonen, 1934 года). В течение многих лет он руководил Исследовательским центром нейронных сетей Технологического университета в Хельсинки, созданным специально для проведения научных исследований, связанных с его разработками. Этот класс ANN так и назван нейронными сетями Кохонена, он отличается наличием слоя, состоящего из адаптивных линейных сумматоров. «Самоорганизующаяся карта Кохонена», так их еще называют, применяется для решения задач моделирования, прогнозирования, выявления наборов независимых признаков, поиска закономерностей в больших массивах данных. Символично, что Теуво Кохонену была вручена награда имени Фрэнка Розенблатта.