Том «Метеорологические и геофизические исследования» входит в состав серии «Вклад России в Международный полярный год 2007/08». Том включает результаты исследований метеорологических, геофизических и климатических условий в Северной и Южной полярных областях в период МПГ 2007/08 в сравнении с условиями в предшествующий период инструментальных наблюдений. Международный полярный год дал уникальные возможности для получения новых экспериментальных данных об окружающей среде полярных областей планеты.
Полярные области являются важными частями климатической системы Земли. Они, особенно Арктика, тесно связаны с глобальной системой переносами тепла, влаги, соли и воды циркуляцией атмосферы и океана. Здесь формируются усиленные этими взаимосвязями изменения климата, среди которых особое внимание привлекает деградация морских льдов. Одновременно для полярных областей пока не удается получить хорошего согласия между наблюдениями и глобальными моделями климата, в которых главная роль отводится росту концентрации парниковых газов в атмосфере.
На основе собранных данных анализируются особенности состояния климатической системы в первое десятилетие XXI столетия и в период проведения МПГ 2007/08 в сравнении с ее состоянием в предшествующий период и с оценками по расчетам на глобальных моделях климата. Проведен анализ климатических режимов и их изменений в полярных и субполярных регионах на основе модельных расчетов разной степени детальности в сопоставлении с данными наблюдений, реанализа и реконструкций. Даны оценки роли естественных и антропогенных факторов в изменениях климата высоких широт в последние десятилетия.
Представлен обзор результатов выполнения трех крупных междисциплинарных кластеров Международного полярного года в Южной полярной области. Выполнены оценки трендов климатических параметров Южной полярной области за период инструментальных наблюдений с учетом данных МПГ. Расчеты показали, что, несмотря на заметные проявления потепления в Западной Антарктике, метеорологический режим Антарктиды в целом остается в пределах естественной изменчивости атмосферных процессов.
Палеоклиматические реконструкции, основанные на изучении спорово-пыльцевых спектров рыхлых отложений в циркумполярной Арктике, полученных в период МПГ, показали, что время наступления похолоданий и потеплений в различных частях Арктики различно.
В рамках работ Российской антарктической экспедиции (РАЭ) выполнялись измерения концентрации углекислого газа и метана в приземном воздухе в Антарктиде на станции Новолазаревская (70°46’ ю.ш., 11°50’ в.д.).
Для оценки состояния озонового слоя в атмосфере Арктики и Антарктики проводились наблюдения за общим содержанием озона (ОСО) на российских стационарных станциях и на научно-экспедиционных судах (НЭС) во время их рейсов в Антарктиду и Арктику. Сопоставление вновь полученных данных с результатами наблюдений в предшествующие десятилетия позволяет говорить об уменьшении степени проявления весенней отрицательной аномалии ОСО в Антарктиде.
Выполненные модельные расчеты показали, что к 2050-му году еще не произойдет восстановления общего содержания озона до уровня 1970-го года. Концентрация тропосферного озона возрастет на 10–15 %, а дефицит массы озона для атмосферы Земли в целом по сравнению с 1970 годом при этом составит 2 %.
Для радиационного баланса системы «Земля-атмосфера» важна роль аэрозольных примесей в атмосфере. Они ослабляют потоки прямой солнечной радиации, приходящей к поверхности, активно участвуют в процессах конденсации водяного пара, приводят к изменению характеристик облачного покрова, т. е. к изменению суммарного альбедо облачного покрова Земли. Суммарный прямой эффект влияния аэрозольной составляющей на радиационное выхолаживание атмосферы оценивается величиной от -0,9 до -0,1 Вт/м2. В среднем это компенсирует 1/3 величины радиационного прогрева атмосферы за счет углекислого газа (IPCC 2007).
Особое значение имеют относительно редкие исследования аэрозольной составляющей в наиболее чистых районах, таких как Антарктида и Южный океан, которые удалены от основных источников генерации природного и антропогенного аэрозоля. Данные, полученные здесь, позволяют оценить свойства и тенденции изменения глобального фонового аэрозоля. В настоящее время величины аэрозольного ослабления солнечной радиации в Антарктиде были и остаются одними из самых низких на Земле. Они стабильны в пределах их естественной изменчивости. Это свидетельствует о том, что атмосфера Антарктиды до сих пор практически не подвержена загрязнению аэрозолем антропогенного происхождения.
В Арктике, в отличие от Антарктики, имеются очаги аэрозоля антропогенного происхождения. «Дыхание» этих источников чувствуется над российскими арктическими морями, в центральной Арктике и над северными территориями американского материка. Современные изменения характера атмосферной циркуляции и режима осадков в Северной полярной области не могли не повлиять на уровень загрязнения воздуха и подстилающей поверхности в Арктике. Поэтому в рамках МПГ 2007/08 были выполнены исследования пространственных и временных закономерностей переноса воздушных масс и антропогенных аэрозольных составляющих.
На протяжении ряда предшествующих МПГ лет проводилось изучение пространственно-временной изменчивости параметров аэрозольных частиц в приводном слое морей Арктики. Эти исследования были продолжены в рамках проекта Международного полярного года 2007/08 «Эоловый и ледовый перенос и потоки вещества (включая экотоксиканты) в Арктике». Они позволили получить количественные характеристики массовой и счетной концентрации аэрозоля, массовой концентрации микрокристаллического углерода и ионного состава приводного аэрозоля.
Исследования в верхней атмосфере включали исследования состояния ионосферы в восточно-азиатском регионе во время геомагнитных возмущений. Для анализа вариаций ионосферных параметров использованы данные ионосферных станций наклонного зондирования на трассах Магадан-Иркутск и Норильск-Иркутск и измерения полного электронного содержания (ПЭС) на сети наземных приемников GPS. Уделено также внимание глобальным колебаниям магнитосферы. При этом важно, что период МПГ 2007/08 был периодом глубочайшего минимума солнечной активности, каких не наблюдалось в течение двух столетий, с начала 19-го века.
Исследовалось и воздействие солнечной активности на климатическую систему Земли. Ключевая концепция при этом – влияние гелиогеофизических возмущений на параметры земной климатической системы, управляющие потоком энергии, уходящей от Земли в космос в высокоширотных областях. Выполнено также исследование взаимосвязи интенсивности весенней депрессии озона в Антарктике с квазидвухлетним циклом зонального ветра в экваториальной стратосфере с учетом сезонных закономерностей его эволюции и зависимости от солнечной активности.
В целом, скоординированные широкомасштабные наблюдения в Арктике и Антарктике, выполненные в 2007/08 годах, позволили собрать уникальную коллекцию данных, освещающих состояние климатической системы полярных областей в период глобального потепления. Сравнение вновь полученных данных с изменениями в предшествующий период, а также с изменениями в других районах планеты и с результатами расчетов с использованием глобальных климатических моделей проливает свет на причины наблюдаемых изменений в полярных атмосфере, океане и ближнем космосе.
Благодаря полученным в период МПГ 2007/08 данным, объединенным с ранее собранными данными о состоянии водных масс, морских льдов и атмосферы, оказалось возможным проследить развитие потепления в 1990–2000-х годах в морской Арктике, его связь с изменениями глобального климата и сравнить с потеплением в 1930–40-е годы. В статье анализируются особенности состояния климатической системы в первое десятилетие ХХI столетия и в период проведения МПГ 2007/08 в сравнении с состоянием атмосферы, морских льдов и океана в Арктике в предшествующий период. Рассматриваются изменения характеристик состояния атмосферы, морских льдов и океана, проводится сравнение с изменениями в других областях и с оценками по расчетам на глобальных моделях климата из ансамбля CMIP3.
Арктика составляет часть климатической системы Земли, тесно связанную с другими ее частями переносами тепла, влаги, соли и воды циркуляцией атмосферы и океана. Здесь формируются усиленные этими взаимосвязями изменения климата, среди которых особое внимание привлекает деградация морских льдов в Северном Ледовитом океане (СЛО), остро реагирующих на изменения климата. Одновременно Арктика является одним из районов, для которых пока не удается получить хорошего согласия между глобальными моделями и наблюдениями в воспроизведении происходящих изменений климата.
Потепление в Арктике, начавшееся в конце 1980-х годов, усилилось с середины 1990-х годов и достигло максимального развития к 2007 году. В этот период происходило резкое сокращение площади, занимаемой морскими льдами в конце летнего периода. В Арктическом бассейне распространялась обширная положительная аномалия температуры в подповерхностном слое воды атлантического происхождения (АВ) и изменилось распределение пресной воды в верхнем слое. На этот климатический сдвиг пришлось возрождение арктических экспедиционных исследований, увенчавшееся проведением Международного полярного года 2007/08.
По проекту ААНИИ «Комплексные исследования центральной части СЛО» в период МПГ 2007/08 проводились скоординированные широкомасштабные наблюдения в Арктическом бассейне с использованием научного судна ледокольного типа, вертолетов, дрейфующих станций «Северный Полюс». Одновременно выполнялись другие национальные и международные проекты, включавшие океанографические наблюдения с помощью стационарных и дрейфующих автономных устройств (WHOI) и измерения водообмена через проливы (Schauer et al., 2004). В рамках проекта ААНИИ был выполнен также комплекс измерений структуры атмосферного погранслоя надо льдом, газового состава и аэрозольных компонент, составляющих теплового баланса на поверхности Арктического бассейна (Ашик и др., 2010).
Сравнение полученных результатов с результатами крупномасштабных наблюдений в 1970-е годы, наиболее освещенные наблюдениями в СЛО, а также в другие периоды, для которых имеются наблюдения, проливает свет на особенности и причины различий между ними. Благодаря полученным данным, объединенным с ранее собранными данными о состоянии водных масс, морских льдов и атмосферы, оказалось возможным проследить развитие климатического феномена конца 1990 – начала 2000-х годов в морской Арктике, его связь с изменениями глобального климата и сравнить с потеплением в 1930–40-е годы.
Ниже анализируются особенности состояния климатической системы в первое десятилетие ХХI столетия и в период проведения МПГ 2007/08 в сравнении с состоянием атмосферы, морских льдов и океана в Арктике в предшествующий период. Рассматриваются изменения репрезентативных характеристик состояния атмосферы, морских льдов и океана в Арктике и Северной полярной области, проводится сравнение с изменениями в других областях и с оценками по расчетам на глобальных моделях климата из ансамбля CMIP3.
Результаты климатических исследований, основанные как на данных наблюдений и палеоклиматических реконструкций, так и на результатах численных экспериментов с климатическими моделями, указывают на потепление климата на Земле, по крайней мере, в течение последних 130 лет (IPCC, 2007). При этом на фоне глобального потепления сохраняются неопределенности в оценке согласованности с ним региональных изменений климата, во многом проистекающие из недостаточного количества климатических данных и сложных обратных связей. К таким регионам относится Арктика, оценки темпов потепления в которой не всегда подтверждали его усиление (Polyakov et al., 2002) по сравнению со средним по полушарию потеплением.
Для оценки изменений приповерхностной температуры воздуха (ПТВ) в Арктике здесь использованы данные о среднемесячной температуре за столетний период на 30 станциях, расположенных севернее 60° с.ш. (рис. 1), собранные в базе метеорологических данных (Александров и др., 2007).
Рис. 1. Метеорологические станции в Северном полушарии севернее 60° с.ш. в разные периоды ХХ столетия
Такой выбор связан с тем, что существующие сеточные массивы данных о температуре с начала 20-го столетия основаны на меняющемся во времени количестве станций, что влияет на качество интерполяции в узлы сетки. Сравнения данных из сеточных массивов с данными на отдельных станциях показали существенные различия в средних значениях и в коэффициентах линейного тренда даже для современных массивов NCEP и ERA-40 (Кораблев и др., 2007).
Использование постоянного набора станций позволяет избежать проблем, связанных с интерполяцией, и применять при оценке изменений как простое осреднение исходных данных, так и построение распределений различных статистик постанционных временных рядов. Сеточный массив NCEP (Kalnay et al., 1996) использован для дополнительной верификации результатов анализа изменений температуры после 1950 года. Сравнение средних по соответствующей области по данным NCEP и по станциям за этот период показало, что коэффициенты корреляции между рядами среднемесячных ПТВ находятся в пределах 0.81–0.90.
Изменения средней по всем 30 станциям приповерхностной температуры воздуха, а также средней по станциям в приатлантической и тихоокеанской половинах области, разделенных по меридианам 90°–270° в.д., за столетний период в каждый сезон и в среднем за год представлены на рис. 2.
Рис. 2. Сверху вниз: средняя за год, за ноябрь – март, апрель – май, июнь – август и сентябрь – октябрь приповерхностная температура воздуха (°С), осреднённая по 30 станциям к северу от 60°с.ш. (левая колонка), по станциям в атлантической (в центре) и тихоокеанской (справа) половинах этой области. Прямая наклонная линия – тренд, точки – скользящие средние за 11 лет, жирная кривая линия – аппроксимация полиномом 4-й степени. Цифрами даны значения коэффициента тренда и его стандартной ошибки, °С/10 лет (жирным шрифтом выделены значимые на 95 % уровне тренды)
Коэффициенты тренда за весь период для всех рядов положительны и, за исключением 5 рядов, значимы на 95 % и более уровне. Для всех рассматриваемых областей осенние тренды минимальны и незначимы, а весенние все значимы. В целом тренды сильнее в тихоокеанской, чем в атлантической половине области. При этом оценки трендов неустойчивы к сдвигу начала ряда на более поздние годы. Коэффициенты тренда быстро убывают по мере приближения начала ряда к 1925 году вплоть до смены знака тренда для зимы.
Сравнение средних температур за десятилетие 1998–2007 гг. и за самое теплое десятилетие первого потепления показывает (рис. 3), что в среднем за год, весной и летом ПТВ в десятилетие 1998–2007 гг. лет выше во всех рассматриваемых районах (Алексеев и др., 2010б). Однако зимой соотношение обратное для всей области и ее атлантической половины. Осенью 1998–2007 гг. было теплее, при этом самые теплые осенние сезоны в период первого потепления отмечались в конце 1940-х – начале 1950-х годов.
Рис. 3. Средняя ПТВ в самое теплое десятилетия в первом потеплении (первый столбик) и в 1998–2007 гг. (второй столбик) в разные сезоны (слева на право – зима, весна, лето, осень, год) во всей области, в приатлантической и притихоокеанской ее половинах (соответственно, первая, вторая и третья пара столбиков в каждом сезоне)
Сравнение двух потеплений в терминах порядковых статистик рядов среднемесячных данных на 41 станции (с 1921 года) позволяет проследить эволюцию распределения наиболее теплых и холодных месяцев в 1921–2008 гг. Порядковая статистика x(i) (i-тое значение вариационного ряда, где i=N(np+1) – наибольшее целое число в (np+1), n – длина ряда, N – оператор взятия целого числа, p – порядок квантиля) используется для определения года, в который ПТВ в данном месяце и на данной станции была ниже заданного квантиля xp. Точно также x(i), где i=N(n(1 – p)+1) используется для определения года, в который ПТВ выше x1–p.
Суммирование отмеченных таким образом лет по всем станциям, состоящее в подсчете числа случаев, когда данный год попадал в выбранный полуинтервал (<xp или >x1–p), дает распределение повторяемости таких случаев на диаграмме год/месяц. Также подсчитывается число экстремумов, приходящихся на данный год в данном месяце суммарно по всем станциям. Чтобы повысить достоверность и наглядность представления получаемых таким образом значений повторяемости, проводилось их суммирование внутри скользящих интервалов по 9 лет с отнесением полученной суммы к середине или началу интервала. Представление полученных значений на диаграмме (год, месяц) показывает эволюцию температурных условий в арктическом регионе на протяжении рассматриваемого периода в зависимости от месяца года. Если просуммировать повторяемости по сезонам и за год, то можно увидеть (рис. 4), что число теплых месяцев увеличилось в последнее десятилетие, причем быстрее всего летом и за год в целом.
Рис. 4. Количество очень теплых (>95 %-уровня) и холодных (<5 %-уровня) месяцев, просуммированное по сезонам, за год и по 9-летним скользящим интервалам 1921–2008 гг. Год на шкале времени относится к началу 9-летнего интервала. Отрицательные значения на вертикальной оси относятся к очень холодным месяцам. Более темный цвет соответствует распределению экстремумов
Указанные особенности потеплений подтверждаются распределением рангов отдельных месяцев за 1901–2009 гг. (таблица 1). С апреля по декабрь все самые «теплые» месяцы приходятся на период с 2003 по 2009 год. Лишь самый «теплый» январь был в 1930 году, а февраль и март – в 1995 и 1996 гг. Наибольшее число самых «теплых» месяцев (по 3) отмечено в 2003 и 2007 гг., самым «теплым» годом стал 2005-й, самое теплое лето пришлось на 2003 год, зима – на 2008 год, весна – на 2007 г., осень – на 2005 год.
Таблица 1. Годы, на которые пришлись самые тёплые месяц, сезон и год, соответствующие 1, 2 и 3 рангам в рядах средней ПТВ в области севернее 60° с.ш. за 1901–2009 гг.
На рис. 2 помимо положительного тренда в изменениях средней ПТВ хорошо выражено долгопериодное колебание, формируемое потеплениями 1930–40-х и 1990–2000-х годов и понижением температуры в 1970-е годы. Предполагается, что это проявление низкочастотного колебания естественного происхождения с периодом 60–70 лет (Schlesinger and Ramankutty, 1994; Delworth et al., 1997; Polyakov and Johnson, 2000), которое обычно называется атлантическим междесятилетним колебанием (осцилляцией (АМО)).
Дисперсионный анализ ряда среднегодовой ПТВ для рассматриваемой области показывает, что на долю этого низкочастотного колебания, аппроксимированного суммой трех (k = 2–4) членов разложения по полиномам Чебышева, приходится 37 % изменчивости среднегодовой ПТВ, в то время как на долю линейного тренда 11 % и на долю остатка, соответственно, 52 %.
На этой странице вы можете прочитать онлайн книгу «Метеорологические и геофизические исследования», автора Г. В. Алексеева. Данная книга имеет возрастное ограничение 12+, относится к жанрам: «Публицистика», «Прочая образовательная литература». Произведение затрагивает такие темы, как «научные исследования», «геофизика». Книга «Метеорологические и геофизические исследования» была написана в 2011 и издана в 2011 году. Приятного чтения!
О проекте
О подписке