Читать книгу «Зачем нужна геология. Краткая история прошлого и будущего нашей планеты» онлайн полностью📖 — Дуга Макдугалл — MyBook.
cover

Дуг Макдугалл
Зачем нужна геология
Краткая история прошлого и будущего нашей планеты

WHY GEOLOGY MATTERS:

Decoding the Past, Anticipating the Future

by Doug Macdougall

Copyright © 2011 by The Regents of the University of California

This edition published by arrangement with Taryn Fagerness Agency and Synopsis Literary Agency

Серия «Кругозор Дениса Пескова»

© Поникаров Е.В., перевод на русский язык, 2022

© Оформление. ООО «Издательство «Эксмо», 2022

* * *

Шейле, как всегда


Список иллюстраций

1. Геохронологическая шкала

2. Осадочные слои на пермско-триасовой границе

3. Внутреннее строение Земли

4. Кратер Барринджера, Аризона

5. Результат удара Тунгусского метеорита, Сибирь

6. Карта кратера Чикшулуб на полуострове Юкатан в Мексике

7. Диаграмма зависимости частоты столкновений и размеров астероидов

8. Астероид Эрос

9. Хронологическая шкала для первых двух миллиардов лет Земли

10. Ископаемые и современные строматолиты

11. Основные литосферные плиты

12. Полосы разной магнитной полярности на океаническом дне

13. Поперечное сечение зоны субдукции

14. Поперечное сечение, показывающее мантию, кору и литосферу

15. Места землетрясений, которые произошли между 1963 и 1998 годами

16. Разлом Сан-Андреас, Калифорния

17. Балансирующий камень, Калифорния

18. Место Сычуаньского землетрясения 2008 года

19. Карта разлома Рилфут на юго-востоке Соединенных Штатов Америки

20. Карта участков коры архейского возраста

21. Временная шкала протерозойского эона

22. Данные по изотопам кислорода для ледяных кернов из Кэмп Сенчури (Гренландия)

23. Данные ледяного керна со станции «Восток» в Антарктиде за 400 тысяч лет

24. Температуры в Гренландии за последние 50 000 лет

25. Пути в геохимическом цикле углерода

26. Данные керна из осадочных пород для палеоцен-эоценового термического максимума

27. Континенты во времена Карибского океанического плато

28. Окаменелости носорогов в Эшфоллском парке ископаемых животных (Небраска)

29. Сравнение выбросов для нескольких крупных извержений

30. Карта кальдер, образованных Йеллоустонской горячей точкой

31. Временная шкала событий фанерозойского эона

32. Биологическое разнообразие при переходе через ордовикско-силурийскую границу

33. Палеокарты для фанерозойского эона

Предисловие к русскому изданию

Возможно, подзаголовок этой книги «Расшифровка прошлого, предвидение будущего» сейчас даже более уместен, чем при появлении оригинального издания на английском языке. Почему? Потому что работа специалистов, изучающих горные породы, океанические и озерные отложения, керны льда, натёчные образования в пещерах и многое другое ради того, чтобы выяснить, как изменялась среда на поверхности нашей планеты в прошлом, имеет первостепенное значение для понимания самой важной проблемы, с которой человечество сталкивается сегодня: изменение климата. Прошлое не всегда является идеальным аналогом будущего, однако исследования такого рода в сочетании с численным моделированием глобального климата дают нам надежду на прогнозирование потенциальных последствий быстрого роста содержания парниковых газов в атмосфере, который является следствием человеческой деятельности, и на появление способов обратить эту тенденцию вспять.

В этом коротком предисловии я остановлюсь на нескольких недавних достижениях, которые помогли нам узнать больше о прошлом и будущем климата нашей планеты, а также выделю другие успехи, достигнутые науками о Земле за последнее десятилетие. Чтобы в полной мере отдать должное всем новым исследованиям в столь динамично развивающейся области, понадобилась бы целая книга, поэтому мне пришлось проявлять избирательность. По большей части я сосредоточился на исследованиях, тематика которых близка к тому, о чем пойдет речь в основных главах книги.

Начнем с теории тектоники плит, которая с 1960-х годов лежит в основе большей части наших знаний о Земле (см. главу 5). Развитие этой теории привело к осознанию того, что многие явления на поверхности Земли – вулканизм, горообразование, землетрясения и даже состав атмосферы – связаны и между собой, и с процессами, происходящими внутри планеты. В свою очередь, это является основой для понимания Земли как системы, а не как совокупности отдельных, не связанных между собой частей.

Другой вечный вопрос, который кратко рассмотрен в главе 5: когда началась тектоника плит? За последнее десятилетие этой проблеме посвящали множество исследований, и, хотя окончательного ответа по-прежнему нет, диапазон возможных вариантов сузился. Почему так важно знать, когда началась тектоника плит? Потому что понимание этого процесса многое объясняет в том, как Земля функционирует сегодня. Это, в свою очередь, имеет серьезные последствия для понимания того, как наша планета эволюционировала в течение геологического времени. С его помощью мы, вероятно, поймем эволюцию и других планет Солнечной системы. Есть и практические следствия: многие месторождения полезных ископаемых образовались в конкретных тектонических условиях. Знание того, когда начался этот процесс, может помочь нам в их поисках.

Согласно современной теории тектоники плит, несколько относительно жестких участков литосферы планеты (их называют плитами, см. рисунки 11–14) перемещаются относительно друг друга по поверхности планеты. Океанические плиты в геологических масштабах недолговечны: они образуются в результате магматической деятельности, происходящей вдоль океанических хребтов, и возвращаются обратно в мантию в зонах субдукции (рисунки 12 и 13); в то же время более плавучие участки континентальной литосферы остаются на поверхности. Основной движущий фактор перемещения плит – тяжесть холодных океанических плит, которые опускаются в мантию в зонах субдукции. Это означает, что ключевым индикатором древней тектоники плит является наличие в геологической летописи минералов и горных пород, уникальных для этих зон. Однако у этого подхода есть несколько проблем. Прежде всего, многие древние породы исчезли в результате эрозии и действия самих тектонических сил, поэтому существует риск, что свидетельства необратимо утеряны. Чем дальше в прошлое, тем меньше будет примеров. Далее, большая часть древних пород после образования трансформировалась в результате интенсивных метаморфических процессов, и поэтому характеристики зон субдукции теперь определить затруднительно. Кроме того, мы знаем, что когда-то внутренняя часть Земли была намного горячее, чем сейчас, и, поскольку типы горных пород, сформировавшихся в зонах субдукции, зависят от температуры, то характеристики пород и минералов в современных зонах субдукции могут не в полной мере отражать ситуацию в древние времена.

В главе 5 обсуждается, что возраст самых старых горных пород, которые однозначно образовались в зоне субдукции, составляет чуть менее миллиарда лет. За последние десять лет эти данные не пересматривались, однако постоянное накопление высококачественных химических и минералогических данных по древним породам протерозойского и архейского эонов (рисунок 1) и значительно выросшие вычислительные возможности компьютеров, позволившие проводить сложное моделирование термальных, механических и петрологических характеристик древней Земли, дали гораздо более четкую картину того, как, вероятно, развивалась тектоника плит. Как здорово, что у нас есть возможность заглянуть с помощью таких моделей на миллионы лет назад и наглядно представить, как функционировала планета на заре своей истории.

Не вдаваясь в детали, я кратко изложу здесь сложившееся представление. В настоящее время принято считать, что при формировании Земли наружная область нашей планеты – до глубины, возможно, нескольких сотен километров – была расплавлена (так называемый магматический океан). Относительно быстро по геологическим масштабам – от нескольких миллионов до 10–20 миллионов лет – сформировалась твердая кора. Однако на нее часто падали крупные каменные объекты из космоса, а через слабые места в коре из все еще горячих недр изливались потоки лавы. Никаких следов этой ранней коры не сохранилось, но в итоге Земля перешла в состояние, которое специалисты называют периодом «тектоники неподвижной[1] покрышки», когда литосфера и кора во многом походили на современные, но литосфера была теплее, мягче и характеризовалась либо слабыми горизонтальными перемещениями, либо вообще их отсутствием. Она была, как следует из названия, неподвижной.

С момента своего образования Земля постепенно остывает – в основном за счет внутренней конвекции, когда горячая материя мантии двигается к поверхности, а более холодный опускается в глубину. Численные модели показывают, что основное различие между тектоникой неподвижной покрышки и тектоникой «мобильной покрышки» (то есть тектоникой плит) связано с тем, как происходит обмен между горячей внутренностью планеты и более холодной литосферой. При современном режиме тектоники плит горячая вулканическая магма извергается в центральной части океанов и на границах плит, образуя новую кору, в то время как более холодные материалы ныряют обратно в мантию в зонах субдукции. Напротив, при режиме неподвижной покрышки на древней Земле этот обмен имел совершенно другую форму. Ученые назвали это процессом «стекания и подъема»: плотные породы из нижней части литосферы «стекали» в мантию, в то время как расплав (магма) от восходящих потоков в мантии поднимался и формировал новую твердую кору и литосферу посредством проникновения и магматической деятельности.

Сценарий «стекания и подъема», конечно же, никто не наблюдал непосредственно, однако численные модели показывают, что он должен был доминировать на ранних этапах истории планеты. Высокие температуры мантии тех времен означали, что субдукция – в том виде, как мы ее сейчас знаем – происходить не могла; литосфера, более горячая и менее жесткая по сравнению с современным состоянием, не была достаточно прочной, чтобы погружаться в мантию в неповрежденном виде. Если бы литосферная плита начала погружаться внутрь Земли, она бы просто разрушилась. Только после того, как Земля потеряла тепло, а мантия остыла, стал возможен переход от тектоники неподвижных покрышек к тектонике плит. Этот переход шел постепенно и длился, возможно, сотни миллионов лет; вполне вероятно, что на краях первых сформировавшихся континентов происходила какая-то локальная мелкомасштабная субдукция – еще до возникновения современной глобальной системы тектоники плит.

Более подробную информацию об этих исследованиях можно найти в двух недавних обзорных статьях Палина и др., Брауна, Джонсона и Гардинера (см. библиографию в конце книги).

Вторая область, где за последнее десятилетие достигнут существенный прогресс, касается влияния на нашу планету внеземных объектов. Этой теме посвящена Глава 3, в которой рассказывается о некоторых хорошо известных столкновениях, зафиксированных в геологической летописи, а также об усилиях по обнаружению околоземных объектов, которые потенциально в будущем могут столкнуться с Землей.

Ударное кратерообразование – основной процесс, формирующий ландшафт наших твердых соседей по Солнечной системе – Луны, Меркурия, Венеры и Марса. Космические тела барабанили и по Земле, однако на нашей динамичной планете эрозия, накопление осадков и тектоническая деятельность стерли или скрыли многие кратеры, появлявшиеся в течение миллионов и миллиардов лет. Однако 15 февраля 2013 года мы получили недвусмысленное напоминание о том, какой вред могут нанести планете космические гости: в атмосферу недалеко от Челябинска (Россия) влетел относительно небольшой астероид (примерно 20 метров в диаметре). Он разрушился на высоте примерно 30 километров: ударная волна разбила окна, слегка повредила сооружения и сбила находившихся на улице с ног. Кратковременная, но яркая вспышка оставила легкие «солнечные ожоги» на лицах некоторых очевидцев. Неудивительно, что в последние годы люди стали активнее искать околоземные объекты, которые представляют потенциальную опасность для нашей планеты, а также разрабатывать методы предотвращения таких столкновений.

Одним из наиболее впечатляющих достижений в сфере исследований ударного кратерообразования стал совместный проект Международной программы по исследованию океанов и Международной программы континентального научного бурения: в апреле и мае 2016 года ученые провели бурение в ударном кратере Чикшулуб в Мексике. Как рассказывается в Главе 3, этот кратер диаметров в двести километров образовался примерно 66 миллионов лет назад, и эту катастрофу связывают с массовым вымиранием[2], знаменующим границу между меловым и палеогеновым периодами на геологической шкале (одновременно это граница между мезозойской и кайнозойской эрами; рисунок 1). Хотя в то время вымерли многие виды, больше всего известно исчезновение с лица Земли динозавров.

По кернам, извлеченным во время бурения, ученые смогли с потрясающей детализацией реконструировать события первых минут и часов после удара. Одна из статей, описывающих эти наблюдения, называется «Первый день кайнозойской эры» (см. библиографию в конце книги).

Уникальная характеристика кратера Чикшулуб – находящееся внутри него приподнятое кольцо из каменистого материала, которое расположено концентрично с краем кратера. Такой объект называют «пиковым кольцом», и Чикшулуб – единственное место на Земле, где обнаружено подобное кольцо – хотя такие формации нередко встречаются внутри крупных кратеров на Луне, Марсе, Венере и Меркурии. Ученые пробурили пиковое кольцо непосредственно, и взятые образцы позволили выяснить, как оно образовалось. Во время удара уровень океана был намного выше современного, и место столкновения с астероидом полностью находилось под водой[3]

На этой странице вы можете прочитать онлайн книгу «Зачем нужна геология. Краткая история прошлого и будущего нашей планеты», автора Дуга Макдугалл. Данная книга имеет возрастное ограничение 16+,. Произведение затрагивает такие темы, как «история цивилизации», «будущее планеты». Книга «Зачем нужна геология. Краткая история прошлого и будущего нашей планеты» была написана в 2011 и издана в 2022 году. Приятного чтения!