Дэвид Дарлинг — лучшие цитаты из книг, афоризмы и высказывания

Цитаты из книг автора «Дэвид Дарлинг»

162 
цитаты

Поляризация – это свойство волн, соответствующих фотонам, которое описывает поведение колеблющейся величины в плоскости, перпендикулярной направлению их движения.
28 мая 2021

Поделиться

Международная группа ученых проанализировала работу на ударных Джеффа Поркаро, участника группы Toto, прославившегося своей виртуозной игрой на хай-хэте (сдвоенных тарелках), на котором он играл одной рукой. Как в ритме, так и в громкости ударов по хай-хэту исследователи обнаружили самоподобные фигуры, общая структура которых перекликалась с рисунком более коротких пассажей. Игра Поркаро на ударных – это акустический эквивалент фрактальной береговой линии, проявляющий самоподобие при различных масштабах. Кроме того, ученые установили, что слушателям больше нравятся именно такого рода вариации, а не идеально выстроенный ритмический рисунок или, наоборот, более случайный. Фрактальные фигуры у каждого барабанщика свои, и это одна из особенностей, которая делает их игру уникальной и узнаваемой. Похожее наблюдается и у музыкантов, играющих на других инструментах. Эти мельчайшие отклонения от идеала – то, что отличает человека от машины.
2 апреля 2022

Поделиться

Странный аттрактор, известный как “циклически симметричный аттрактор Томаса”.
2 апреля 2022

Поделиться

В ходе своих новаторских исследований хаоса Лоренц также обнаружил новый вид фрактала, так называемый странный аттрактор. Обычный аттрактор прост в том смысле, что точки стремятся к нему, а затем совершают определенные постоянные циклы в его окрестностях. Странные же аттракторы, как мы увидим, ведут себя иначе. Для того чтобы получить первый пример странного аттрактора, Лоренц использовал систему дифференциальных уравнений. При увеличении масштаба в любой его точке появлялось бесконечное множество параллельных линий. Любая точка на аттракторе передвигалась по хаотической траектории рядом с ним, никогда не возвращаясь точно в исходное положение, а две точки, находившиеся изначально очень близко друг к другу, быстро расходились и в итоге оказывались на совершенно разных траекториях. Чтобы провести аналогию с физическим миром, представьте себе шарик для настольного тенниса и океан. Если шарик сбросить с высоты над океаном, он будет быстро падать, пока не коснется воды. Если его погрузить под воду и отпустить там, он быстро всплывет. Но как только он оказывается на поверхности океана, его движение становится совершенно непредсказуемым и хаотичным. Точно так же точка, не находящаяся на странном аттракторе, будет стремительно двигаться по направлению к нему. Достигнув же странного аттрактора, она начинает двигаться вблизи него хаотично.
2 апреля 2022

Поделиться

Чтобы увидеть, как хаотические процессы приводят к образованию фракталов, можно взять тот же итеративный процесс и нанести на сетку координат аттракторы для каждого значения k. Бо́льшая часть из того, что появляется после k = 3,57, – чистый хаос, но есть несколько значений k, для которых существует конечный аттрактор. Их называют “островами стабильности”. Один из таких островов образуется при значении k, близком к 3,82. В этом месте мы обнаруживаем аттрактор, состоящий всего из трех значений. Приблизив на графике любое из этих значений, мы видим рисунок, очень похожий на весь график в целом, хоть и не повторяющий его в точности.
2 апреля 2022

Поделиться

Возьмем некое значение x, которое может быть любым числом от 0 до 1 включительно. Затем умножим x на (1 – x) и на постоянную k, которая может быть любым числом от 1 до 4 включительно. Полученное значение x снова подставим в эту же формулу, и так снова и снова. На математическом языке можно записать то, что мы делаем, в виде x → kx(1 – x) для 0 ≤ x ≤ 1 и 1 ≤ k ≤ 4. Выполняя эти действия, мы обнаружим, что для значений k, меньших или равных 3, существует аттрактор, состоящий из одной точки, к которому стремятся все значения x (кроме 0 и 1). Для значений k от 3 до 3,45 аттрактор состоит из двух чередующихся точек. При значении k в диапазоне от 3,45 до 3,54 аттрактор состоит из четырех точек, потом их становится восемь и так далее, причем количество точек удваивается все чаще и чаще. При значении k, равном приблизительно 3,57, происходит существенное изменение, после которого удвоение уже не учащается, а происходит бесконечное количество раз. На этом этапе система уже не может стабилизироваться и становится абсолютно хаотичной. Хаос возникает в момент, когда предсказуемая система становится полностью непредсказуемой. Например, в нашем случае при значении k, меньшем 3, легко предсказать, что после, скажем, ста итераций точка окажется очень близко к единственному аттрактору. При значениях k, превышающих 3,57, уже невозможно предсказать, как поведет себя в отдаленном будущем та или иная точка. Процессом удвоения точек аттрактора (от одной к двум, от двух к четырем и так далее), который мы наблюдали, когда значение k в нашем примере превысило 3, управляет важная математическая постоянная, называемая константой Фейгенбаума. Увидеть, как эта важная константа возникает, можно на этапах, предшествующих хаосу. Первая фаза, с циклом в одну точку, имеет длину 2, поскольку длится от k = 1 до k = 3. Вторая фаза, с циклом в две точки, имеет длину приблизительно 0,45, так как длится от k = 3 до k = 3,45. Отношение 2:0,45 равно примерно 4,45. Третья фаза имеет длительность около 0,095. Отношение 0,45: 0,095 приблизительно равно 4,74. И так далее. Эти отношения стремятся к константе Фейгенбаума, которая приблизительно равна 4,669. Длительность фаз сокращается экспоненциально, так что к моменту, когда k достигает 3,57, цикл повторяется бесконечное количество раз.
2 апреля 2022

Поделиться

Предположим, мы приняли какие-то погодные условия за начальные. Исходя из них, мы можем вычислить прогноз на будущее. Однако стоит нам хоть слегка скорректировать начальные условия, и наш прогноз очень скоро изменится до неузнаваемости. Именно этот факт подтолкнул американского математика и метеоролога Эдварда Лоренца к открытию хаоса. Как-то в 1950-х годах, работая с математически упрощенной моделью погоды, он ввел в свой компьютер данные и построил график, но тут его прервали. Вернувшись к работе, он решил не начинать вычисления с начала (это отняло бы слишком много времени), а запустил процесс моделирования с середины, вручную введя в компьютер рассчитанные ранее промежуточные данные. Полученная кривая поначалу соответствовала предыдущей, но вскоре стала все больше отклоняться от нее, словно бы это был совершенно новый график. Причина оказалась в том, что в памяти компьютера хранится больше десятичных знаков, чем в выводимых им округленных значениях. Когда Лоренц перезапустил программу с середины, эти “лишние” знаки учтены не были, поэтому введенные заново данные неуловимо отличались от первоначально полученного результата. В процессе вычислений эти отличия становились все более очевидными, пока не вылились в значительное отклонение. Этот случай привел к открытию принципа, который Лоренц назвал “эффектом бабочки”, имея в виду, что сегодняшний взмах крыльев бабочки может через месяц привести к урагану. Того же эффекта, когда
2 апреля 2022

Поделиться

временем она может стать мощным объединяющим принципом, действующим на самых различных уровнях – от фантастически миниатюрных струн до таких повседневных явлений, как рост снежинок или образование минеральных отложений. Уже сегодня абсолютно ясно: случайность лежит в основе физической вселенной, а в основе случайности лежит математика. То, что истинно случайно, непредсказуемо. Нельзя заранее знать, каким окажется следующий элемент случайной цепочки. В физике невозможно предугадать, когда наступит случайное событие, такое как распад радиоактивного ядра. Если событие случайно, о нем говорят, что оно недетерминировано, поскольку даже в принципе невозможно, зная то, что уже произошло, спрогнозировать, что будет дальше. В быту мы часто случайное называем хаотичным. “Случайность” и “хаос” в повседневном языке стали практически полными синонимами.
2 апреля 2022

Поделиться

количество шагов? Можно для простоты свести задачу к одномерному виду: пусть человек движется только по прямой в одну или другую сторону, а перед каждым шагом как будто подбрасывает монетку, чтобы решить, куда идти – направо или налево. Впервые задача воплотилась на практике в 1827 году, когда английский ботаник Роберт Броун привлек внимание к явлению, позднее названному броуновским движением, – беспорядочному танцу зерен пыльцы в воде, который он разглядел в микроскоп. Позже этот феномен объяснили тем, что частицы пыльцы хаотично бомбардируются молекулами воды, которые всякий раз толкают крохотные зернышки в случайном направлении (так что каждое ведет себя словно пьяный из нашей задачи). Но только в 1920-х годах американский математик и философ Норберт Винер детально исследовал все математические аспекты броуновского движения. Для этого нужно было понять, что происходит в задаче о случайном блуждании, когда длина шагов и временной интервал между ними постепенно сокращаются. Получившиеся случайные траектории очень напоминают путь, проделываемый частицами при броуновском движении. Позднее физики заинтересовались случайным движением иного рода. Теперь уже действующими лицами были не частицы, передвигающиеся по искривленным одномерным траекториям, а мельчайшие трепыхающиеся “нити”, колебания которых могут быть представлены как двумерные поверхности. Это те самые струны из теории струн – самой передовой, но пока не доказанной теории элементарных частиц, составляющих всю материю. Скотт Шеффилд сформулировал это таким образом: “Чтобы понять квантовую физику для струн, нужно нечто вроде броуновского движения для поверхностей”. Начало такой теории положил в 1980-х годах физик Александр Поляков, сейчас работающий в Принстонском университете. Он придумал способ описания подобных поверхностей, который сейчас именуется квантовой гравитацией Лиувилля. Параллельно была разработана еще одна модель, названная броуновской, которая также описывала случайные двумерные поверхности, но давала о них иную, дополнительную информацию. Прорыв, совершенный Шеффилдом и Миллером, заключался в том, что им удалось доказать: эти два теоретических подхода, квантовая гравитация Лиувилля и броуновская модель, эквивалентны. И пусть предстоит еще немало работы, прежде чем теорию можно будет применять непосредственно для решения физических задач, но со
2 апреля 2022

Поделиться

Двое исследователей, Скотт Шеффилд из Массачусетского технологического института и Джейсон Миллер из Кембриджского университета, обнаружили, что многие из двумерных фигур и траекторий, генерируемых случайными процессами, разделяются на четко различимые категории, каждая из которых обладает собственным набором характеристик. Их классификация привела к открытию неожиданных связей между разнородными случайными объектами, не имеющими, казалось бы, никакого отношения друг к другу. Первый изученный математиками тип случайной траектории – так называемое случайное блуждание. Представьте себе пьяного, начинающего свой путь от фонарного столба. Он идет, пошатываясь, от одной точки к следующей, с каждым шагом (предполагается, что все шаги равной длины) случайно выбирая направление. Вопрос: как далеко от столба он окажется через определенное
2 апреля 2022

Поделиться