каждый алгоритм машинного обучения предпочитает определенные типы функций во время поиска. Эти предпочтения известны как смещение обучения алгоритма. Реальная проблема в использовании машинного обучения состоит в том, чтобы найти алгоритм, смещение обучения которого лучше всего подходит для конкретного набора данных. Как правило, для того, чтобы выяснить, какой из алгоритмов лучше всего работает с конкретным набором данных, требуются эксперименты.