Читать книгу «Шелест гранаты» онлайн полностью📖 — Александр Прищепенко — MyBook.
image
cover

Александр Борисович Прищепенко
Шелест гранаты

1. Манящий запах пороха

…Момент был сочтен удачным: родители были заняты застольными разговорами. Достав малую саперную лопатку, я начал копать недалеко от подсобки. Земля поддавалась легко. Наконец, когда ямка достигла глубины штыка лопатки, я достал коробочку из-под духов, где, завернутые в фольгу, лежали примерно 100 граммов ДНДАФ[1] – результат недельных химических опытов.

ДНДАФ – стойкий краситель: кожа рук более недели после завершения «производства» не теряла грязно-коричневый оттенок, который нельзя было соскрести даже пемзой. Но целью являлось, конечно же, не получение красителя: ДНДАФ был мощным взрывчатым веществом (ВВ), причем инициирующим – взрывался даже от слабой искры. В развернутую фольгу была помещена лампочка от карманного фонаря с разбитым баллоном и спиралью, обмазанной размягченной в ацетоне и затем высушенной пороховой смесью. Два провода, ведущих к лампочке, были прокинуты в сторону от «шахты», которая была засыпана и тщательно утрамбована. Мелькнула мысль положить сверху еще и тяжелый камень, но ангел-хранитель и лень не допустили такой глупости: при неблагоприятном стечении обстоятельств камень мог бы и «заплясать» на голове «руководителя испытаний». Наконец, я лег на землю в десятке метров от «шахты», взял в одну руку фотоаппарат, а пальцем другой (с намотанным на него проводом) стал нащупывать контакт батарейки…


Рис. 1.1 Неудавшийся «камуфлет»


…Контакт был замкнут неожиданно: внезапный сильный удар по ушам оглушил, он же вызвал судорогу пальца на спуске фотоаппарата (рис. 1.1). Не было никакого протяжного гула, «как в кино». Вверх взлетела туча дыма, песка и какие-то ошметки.

Задуманный камуфлет – подземный взрыв без выброса газообразных продуктов на поверхность – явно таковым не получился. Ни с чем не сравнимый запах этих газов щипал ноздри и легкие. Мне суждено было вдохнуть его тысячи раз…


… По ушам «руководителю испытаний» хлопнула тогда ударная волна, а в шахте произошла детонация. Эти явления тесно связаны.

Движение поршня, как и любое другое, можно представить как последовательность очень малых перемещений. Каждое из них формирует возмущение: чуть-чуть поджимает газ впереди себя и сообщает сжатой массе скорость поршня (рис. 1.2). В этой слабой (акустической) волне, скорость фронта равна скорости звука, но в сжатом газе скорость звука больше, чем в несжатом, и, поскольку дальнейшие возмущения пойдут по сжатому, они будут иметь большую скорость. Кроме того, сам сжатый газ движется со скоростью поршня и, следовательно, относительно цилиндра скорость второй волны равна сумме скоростей: поршня и увеличенной – звука. Эта сумма и подавно превосходит скорость первого возмущения, поэтому вторая волна сжатия непременно догонит первую и усилит ее. Но перегнать ее она не сможет, так как для этого ей пришлось бы перейти в несжатый газ, где скорость распространения возмущения опять равна начальной скорости звука. Таким образом, поршень погонит удаляющуюся от него волну сжатия увеличивающейся амплитуды, которая образуется в результате слияния отдельных слабых возмущений. Со временем, количество перейдет в качество: на фронте волны образуется резкий скачок уплотнения, в котором будет расти давление – до сколь угодно больших значений, в зависимости от скорости поршня. Такое резкое, происходящее на расстоянии порядка длины свободного пробега молекул изменение параметров вещества – и называется ударной волной.


Рис. 1.2

Вверху: образование ударной волны поршнем, вдвигаемым в цилиндр с газом (в «красной» области – ударно-сжатый, нагретый и более плотный газ). Внизу: ударно-волновой процесс в конденсированном веществе. Срабатывание электродетонатора (его провода видны в правой части снимка) привело к формированию в заряде динамита ударной волны, за которой последовала химическая реакция (произошла детонации этого мощного взрывчатого состава)


В сформировавшейся УВ все параметры связаны взаимнооднозначным соответствием. Иными словами: для идентичных начальных условий невозможно сформировать волны, например, с одинаковыми скоростями, но разными давлениями во фронте или температурами. Это существенно упрощает многие эксперименты: достаточно измерить скорость или любую другую характеристику УВ – и остальные ее параметры можно определить по таблицам. Правда, подобное справедливо лишь для однократного ударного сжатия вещества. Если же оно сжимается несколькими волнами – тут возможны варианты.

УВ не только сжимает, она также и нагревает вещество, из-за чего плотность сжатого вещества не становится сколь угодно большой при неограниченном росте давления, а стремится к конечному пределу (воздух, например, сжимается не более чем в 6 раз). Предел ударного сжатия существует и для конденсированных веществ, а, поскольку сжатие конечно, массовая скорость вещества (скорость поршня) всегда меньше скорости фронта (рис. 1.3).


Рис. 1.3

«Карандашная» иллюстрация сжатия вещества в УВ. Моделируется «воздушный» врыв и УВ распространяется сверху вниз. Пусть сжатие – двукратное, тогда в невозмущенном веществе зазоры должны быть равны толщине карандашей

(так расположены карандаши зеленого цвета, имитирующие невозмущенное вещество). Начнем двигать верхний карандаш. Выбрав зазор, этот карандаш толкнет соседний, тот, пройдя зазор, – следующий и т. д. «Ударное сжатие» привело к смещению карандашей, захваченных процессом, «повышению плотности вещества». При этом «фронт» процесса (граница области, где находятся карандаши без зазоров между ними) всегда опередит любой из двигающихся карандашей. Чем больше сжатие (больше расстояние между карандашами), тем меньше различаются массовая скорость и скорость фронта, но отличие существует всегда. Цветами карандашей автор попытался проиллюстрировать и температурный профиль волны


Но все это относится к субстанциям инертным, а ведь есть и такие, распад метастабильных[2] молекул которых происходит с выделением энергии. Достаточно мощная УВ как раз и инициирует этот процесс: за ударным фронтом вещество нагревается и начинается химическая реакция. Вначале энергией этой реакции фронт «подпитывается», ускоряясь, затем устанавливается равновесие. Такой процесс называется детонацией, а установившаяся скорость УВ и химической реакции за ее фронтом – скоростью детонации, которая для современных ВВ близка к 10 км/с.

Понятно, что термодинамические характеристики вещества изменяются при протекании в нем реакции, но явление детонации вполне возможно описать в рамках теории УВ: скорость детонации относительно продуктов реакции равна местной скорости звука в продуктах реакции (запомним это!).

УВ как явление, вызывающее детонацию, упомянуто не случайно, именно таков основной механизм инициирования бризантных (дробящих) взрывчатых веществ (ВВ), таких как пикриновая кислота. Назвали их дробящими потому, что плотность кинетической энергии газов образованных детонацией столь высока, что они дробят преграды на множество осколков и метают их с большой скоростью. Однако если небольшое количество бризантного ВВ поджечь, то, не находясь в ограниченном объеме, оно, хоть и довольно энергично, сгорит. Правда, горение может перейти в детонацию, если сопровождается повышением давления (как это было, например, на атомной подводной лодке «Курск», где герметичное зарядное отделение торпеды нагревалось пламенем горящего двигателя другой торпеды). Существуют и такие вещества, в которых переход горения в детонацию даже вне замкнутого объема весьма быстротечен. Такие ВВ (например, те же фульминаты) называют инициирующими. В нужный момент в них возбуждают детонацию – огневым или ударным импульсом – а далее они возбуждают тот же процесс в бризантных ВВ.

В отличие от инициирующих, бризантные ВВ считаются (и почти справедливо) нечувствительными к механическим воздействиям: когда отказывают взрыватели[3], как правило, взрывов не происходит в снарядах, ударившихся о броню (рис. 1.4) и отлетевших от нее, в бомбах, сброшенных летящим на околозвуковой скорости самолетом и расколовшихся при ударе об угол здания. Однако редчайшее стечение обстоятельств может привести и к совершенно иным последствиям.


Рис. 1.4


Экспонат военного музея в Вене: бронеколпак времен Первой мировой войны. Снаряд, попавший ближе к вершине, разорвался: об этом свидетельствуют радиальные «лучи», расходящиеся от вмятины. А вот в снаряде, вмятина от которого видна левее, вероятно, отказал взрыватель


Реакция в ВВ начинается в микроскопических очагах разогрева (горячих точках), например – в воздушных включениях (рис. 1.5).


Рис. 1.5


При быстром сжатии, температура в пузырьках воздуха в жидких ВВ или промежутках между кристаллами спрессованного ВВ выше, поскольку теплоемкость воздуха меньше, чем у окружающего их конденсированного ВВ.

Для опыта, иллюстрирующего это явление, понадобится капля эфира, старый шприц и молоток. Наберем каплю эфира в шприц, а затем ударим молотком по поршню (поберечь пальцы!) – и увидим фиолетовую вспышку его паров. Говорят, что таким способом американские солдаты добывали огонь в джунглях Вьетнама. Понятно, эфира у них не было, но нагрев воздуха приводил к тлению кусочка высушенного угля. Правда, как ни старался автор, повторить этот трюк ему не удалось


Возникают локальные перегревы также при течении, трении, переламывании и деформации.

…Если у читателя есть возможность получить щепотку охотничьего зернёного черного пороха – пусть попробует перетереть ее в фарфоровой ступке, перед тем защитив глаза очками. При перетирании будут слышны негромкие потрескивания, ощущаться легкий запах серы, а в сумерках – видны неяркие вспышки между ступкой и пестом. Это – «сигналы» от небольших скоплений горячих точек, образовавшихся при дроблении зерен и трении. Реакции в очагах малых размеров затухают: теплоотвод превышает тепловыделение. Чтобы реакция стала самоподдерживающейся, должна случайно возникнуть концентрация большего количества горячих точек вблизи друг от друга. Когда воздействие на ВВ мощное – в таких центрах зарождения реакции нет недостатка и детонация начинается гарантированно. А вот если воздействие слабое, то инициирование горения или детонации будет вероятностным.

В воспоминаниях В. Цукермана – участника создания советского ядерного оружия – описан случай, когда на испытательной площадке «ни с того, ни с сего» загорелся (а мог бы и сдетонировать!) большой шаровой заряд ВВ. Была сочинена скрыто-издевательская объяснительная записка: над зарядом, мол, пролетела и погадила птичка и та капелька послужила линзой, сконцентрировавшей солнечные лучи. На самом-то деле заряд просто неуважительно «тронули», но участники опыта предвидели, что сладчайшую возможность, грозно насупив брови, задать дурацкий вопрос: «Вы отдаете себе отчет о последствиях, если такое случилось бы с ядерным зарядом?!» руководящие товарищи не упустят – и направили грозу на «птичку». Перед принятием на вооружение все взрывчатые составы проходят испытания прострелом пулей и в огромном числе таких опытов не загораются и не детонируют, но вот, случается…

Ясно, что если температура ВВ повышена, то и для создания очага реакции необходимо меньше горячих точек – чувствительность ВВ возрастет. Ну а если понизить температуру ВВ? В 70-х годах был разработан метод разминирования, предусматривавший охлаждение взрывоопасного предмета жидким азотом. Охлажденное устройство можно было «разобрать», постукивая по нему молотком (при таких температурах и металлы очень хрупки).

А при нормальной температуре – можно ли понизить чувствительность ВВ? Для этого надо удалить воздушные включения

– области концентрации горячих точек. После прессования, под большим давлением и при высокой температуре, в присутствии небольшого количества растворителя, мощная взрывчатка (гексоген) приобретает плотность, близкую к плотности монокристалла, и становится полупрозрачной. Коллега автора выточил из «агатированного» ВВ пепельницу и любил гасить в ней окурки, сообщая посетителям, из чего пепельница сделана и наслаждаясь произведенным впечатлением. Автор отнесся к хвастовству «гусара» неодобрительно.

Еще одна особенность ВВ – они не могут не разлагаться. Это – следствие из второго начала термодинамики, в соответствии с которым реакция, сопровождающаяся выделением энергии, самопроизвольно протекает всегда.

«Начало» ничего не сообщает о скорости такой реакции, но вариантов достаточно. Если вещества много, а начальный импульс существенен – возможна детонация или горение (взрывное или довольно вялое). Если возмущения нет – все зависит от условий хранения. Иногда признаки разложения могут не быть заметны в течение сотен лет; бывает, что увеличивается чувствительность к удару или трению, а иногда продукты разложения ускоряют распад и все заканчивается самовоспламенением и взрывом. Требование стабильности ограничивает плотность химической энергии и в современных ВВ она не превышает 10000 Дж/куб. см[4]. Может быть, и можно синтезировать более мощное вещество, но чувствительность и стойкость его будут такими, что к нему небезопасно станет приближаться.

Из многих тысяч взрывчатых соединений отобрано всего несколько таких, которые сравнительно стабильны, но достаточно действенны при возбуждении детонации. На их основе созданы разнообразные взрывчатые материалы. В годы «холодной войны» в «быках» многих стратегически важных мостов в Западной Европе были блоки, наполнителем бетона которых служил октоген: марш численно превосходящих советских танковых соединений рассчитывали остановить, не тратя драгоценное время на заложение зарядов, а только – прилепляя куски пластита с детонаторами на известные саперам участки опор. Из композиций на основе октогена горячим прессованием получают прочные заряды ВВ – в них можно нарезать метчиком резьбу, и она будет хорошо держать винт. Правда, изготовление пресс-форм сложно, и иногда применяют менее энергоемкие литьевые составы. Используя вязкие присадки, можно получить и эластичные (с консистенцией латекса – мягкой резины) и пластические взрывчатые материалы (с консистенцией детского пластилина) – еще менее мощные. К тому же, скорость их детонации не очень стабильна, потому что технологически сложно добиться идеально-однородного перемешивания связки и наполнителя. Эластичный состав с высокостабильной скоростью детонации создали, не тупо, час за часом, перемешивая компоненты, а – подбирая характеристики ударного сжатия наполнителя и связки. Если скорости звука в связке и в продуктах детонации наполнителя будут близки, то и скорость звука в их смеси не будет зависеть от отклонений в соотношении компонент, а значит, скорость детонации будет постоянна[5]. Такая пара была подобрана: нитрат многоатомного спирта и один из видов синтетического каучука.

Скорость детонации этого состава менее 8 км/сек, (октогена – более 9 км/сек), но создан такой эластит (рис. 1.6) не ради получения рекордных параметров взрыва, а для детонационной автоматики, где главное – максимальная стабильность характеристик.




Рис. 1.6


Верхний ряд: американский листовой эластичный взрывчатый материал (ВМ) «деташит» с постоянной скоростью детонации. По требованию заказчика, в него могут быть добавлены красители разных цветов. Тот же ВМ выпускается в шнуровом варианте («детафлекс»), в пластиковой оплетке или без нее (центральный ряд), а также – в виде тонких (0,5 мм) лент (нижний ряд, слева). Для промышленных целей выпускаются жидкие ВМ (правее). Их, например используют для извлечения взрывом обломков сверл, застрявших в заготовках.

Бинарные ВМ (справа) повышают безопасность: они приобретают взрывчатые свойства, только когда смешивают их компоненты, по отдельности к взрывному разложению не способные

Кроме детонации с постоянной скоростью, возможны и нестационарные режимы. Сходящиеся детонационные волны (цилиндрические, сферические) ускоряются по мере уменьшения радиуса. На достаточно малых радиусах энергия химической реакции вообще перестает играть существенную роль, и возрастание параметров сжатия определяется только геометрическим фактором. Кстати, именно в сферически-симметричном случае возможно достижение экстремальных состояний вещества, хотя часто от даже имеющих дипломы технических вузов приходится слышать, что для получения наибольшего давления следует организовать «лобовое» столкновение тел. Видимо, тут сказывается юношеский опыт игры в футбол, при которой лобовые столкновения происходят часто, а сферически-симметричные – никогда.


Рис. 1.7


Движения вещества в морских и ударных волнах различны. Если выделить небольшую массу воды вблизи поверхности чудно окрашенного тихоокеанским закатом моря, то окажется, что в волне прибоя ее траектория напоминает эллипс или окружность, а плотность не меняется. В ударной волне вещество движется только в направлении распространения волны, вначале увеличивая свою плотность, а затем (если волну не поджимает какой-либо поршень) устремляется в обратном направлении, снижая при этом плотность (в так называемой фазе разрежения или разгрузки). В других главах книги речь пойдет о волнах электромагнитных, совсем уж на морские не похожих – распространяющихся со скоростью света колебаниях напряженности электрического и магнитного полей


Исторически сложилось так, что термин «волны» используется для обозначения многих явлений, в природе которых общего мало (рис. 1.7). Движение вещества при взрывных процессах подчиняется уравнениям гидродинамики, названию которых тоже не всегда соответствует область их применения: ими описываются не только движения жидкости (откуда и «гидро»), они используются дня решения очень многих задач. Возможно, одной из причин внедрения «волновой» лексики послужило то, что, например, процессы отражения УВ имеют сходство с волновыми. Натолкнувшись на твердую преграду, УВ может «отразиться» либо приобретя дополнительное сжатие (рис. 1.8), либо испытав разрежение вещества (вроде как с «потерей фазы»).

Критерием того, по какому сценарию это произойдет, является ударно-волновой импеданс – произведение плотности вещества на скорость звука в нем. Если преимущество в ударно-волновом импедансе за веществом преграды, отражается дополнительно «поджатая» волна, от преграды с меньшим импедансом – разреженная, но в любом случае веществу преграды будет передан импульс и оно начнет двигаться по направлению распространения УВ.


Рис. 1.8


Вверху: отражение ударной волны от преграды с большим ударно – волновым импедансом, чем у вещества в волне. В этом случае в отраженной волне возрастает не только давление, но и плотность вещества может превысить максимально достижимую при однократном ударном сжатии. Нижняя кинограмма: продукты детонации заряда ВВ цилиндрической формы, расширяясь, наталкиваются на преграды. В месте столкновений газ светится ярче, потому что там выше его температура. Газы взрыва «перехлестывают» через преграду, что действительно напоминает морской прибой, но это – не ударная волна, а движение массы вещества, плотность которого выше плотности окружающего воздуха. Ударная волна образуется впереди этого массопотока, из воздуха, сжимаемого им


Чем более массивна преграда, тем бо́льшую кинетическую энергию она приобретет в результате воздействия ударной или детонационной волны. Сообщение энергии оболочке заканчивается на некотором расстоянии от заряда (теоретически – пока давление продуктов взрыва существенно, а практически – на расстоянии, равном нескольким характерным размерам заряда).

Кстати, а те же пороха, от которых требуется только горение в зарядной каморе орудия (и при весьма высоких давлениях!) – могут ли детонировать?








































На этой странице вы можете прочитать онлайн книгу «Шелест гранаты», автора Александр Прищепенко. Данная книга относится к жанрам: «Военное дело, спецслужбы», «Справочная литература».. Книга «Шелест гранаты» была написана в 2012 и издана в 2012 году. Приятного чтения!